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Abstract

Summary: Sampling of control variants having matched properties with input variants is widely used in enrichment ana-
lysis of genome-wide association studies/quantitative trait loci and negative data construction for pathogenic/regulatory
variant prediction methods. Spurious enrichment results because of confounding factors, such as minor allele frequency
and linkage disequilibrium pattern, can be avoided by calibration of statistical significance based on matched controls.
Here, we presented vSampler which can generate sets of randomly drawn variants with comprehensive choices of
matching properties, such as tissue/cell type-specific epigenomic features. Importantly, the development of a novel data
structure and sampling algorithms for vSampler makes it significantly fast than existing tools.

Availability and implementation: vSampler web server and local program are available at http://mulinlab.org/
vsampler.

Contact: hongchengyaonk@gmail.com or mulinli@connect.hku.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the past decade, genome-wide association studies (GWASs) and
quantitative trait loci (QTLs) mapping have identified large amounts
of genetic associations that help to elucidate the underlying mechan-

ism of complex traits and diseases (Visscher et al., 2017). Based on
GWAS/QTL identified variants, enrichment analysis is often utilized
to pinpoint related biological pathways (Jia et al., 2010) or functional
annotations (Farh et al., 2015). Besides, pathogenic/regulatory vari-
ant prediction methods would also use these associated or fine-
mapped variants for training/test data construction (Li et al., 2017;
Zhang et al., 2019; Zhou and Troyanskaya, 2015). During these

studies, control variants sampling which accounts for potential con-
founders is commonly employed. However, simple random sampling
of control variants would often lead to spurious enrichment results
or biased training/test dataset, because the GWAS/QTL identified
variants and the random controls could differ in confounding factors
such as allele frequency, pattern of linkage disequilibrium (LD) and

other genomic features. Existing tool SNPsnap can only control for a
few factors and cannot deal with large-scale inputs (Pers et al.,
2015), which limits its broader usage in the era of big genomic data.

Here, we presented a fast, scalable and versatile tool, vSampler,
for sampling matched sets of variants both as a web server and as a
local program (http://mulinlab.org/vsampler or https://github.com/
mulinlab/vSampler). Given input variants, vSampler can randomly
draw control variants with eight optional matching properties by a
novel data structure and sampling algorithm. These matched ran-
dom controls could be used to construct null distribution in enrich-
ment/colocalization analysis to estimate the significance of statistical
tests empirically or serve as negative training/test data for pathogen-
ic/regulatory variant prediction models. Compared with existing
methods, vSampler runs significantly faster (up to two orders of
magnitude), supports both single-nucleotide polymorphisms (SNPs)
and small insertions and deletions (Indels) and provides comprehen-
sive context-specific functional annotations as matching properties.

2 Database construction and data structure

vSampler extracted biallelic variants from 1000 Genomes project
and stored them in an annotation database and a sampling database.
The annotation database contains all variants and is used for input
variant annotation while the sampling database contains only
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variants with minor allele frequency (MAF) > 0.01 and is used as
the pool of control variants. For each variant, the following eight
properties were computed (see Supplementary Notes for details):
MAF, distance to closest transcript start site (DTCT), gene density
(number of nearby genes), number of variants in LD, GC content,
cell type-specific epigenomic marks, eQTL significance and coding/
non-coding region. Since the selection of matching properties may
sometime not be straightforward, a reference list of publications for
selecting different matching properties was provided in
Supplementary Table S1.

To save disk space and support quick data retrieval of the sam-
pling database, we designed a novel data structure, called bin-wise
chunk-indexed data structure (see Supplementary Notes for details)
and a corresponding index system for the sampling database
(Supplementary Fig. S1A). The novel data structure allows vSampler
to read only variants of queried MAF bins and data chunks of
queried properties, which saves disk reads and achieves great speed
gain.

3 Sampling algorithm

vSampler requires users to supply a list of variants and number of
control variants needed (sampling number), and to select matching
properties together with its allowed deviations. The allowed devia-
tions are necessary as it’s impossible to sample enough variants with
exactly matched properties, and the size of the control pool corre-
sponding to different deviation values is shown in Supplementary
Figure S2. The following processes were executed (Supplementary
Fig. S1B):

1. All input variants will be annotated with selected matching

properties and assigned to sorted MAF bins (MAF is a manda-

tory matching property due to the fact that it is more uniformly

distributed compared with other properties (Supplementary

Fig. S3), MAF bins of input variants are [0, 0.01), [0.01, 0.02),

. . ., [0.49, 0.50]).

2. For each MAF bin of input variants, based on user-specified

MAF deviation and other matching properties, vSampler will

randomly access data of corresponding MAF bins of the sam-

pling database and only read data chunks of selected properties.

These data are stored as a queue in computer memory

temporarily.

3. For each variant in one MAF bin of input variants, according to

the user-specified property deviations and the property values of

the variant, vSampler randomly samples sampling numbers of

matched control variants from the data stored in the queue with-

out replacement. If the number of qualified variants is less than

sampling number, vSampler would sample with replacement.

During the sampling procedure, vSampler sequentially processes
the MAF bins of input variants, and employed a read-store-delete-
in-order algorithm to ensure that the whole sampling database
would be read at most once, which minimize the disk reads and
speed up the sampling process (Supplementary Fig. S1C, see
Supplementary Notes for details).

4 Web server and standalone program

vSampler allows fast variant sampling by both web server and local
program. The input variant format of vSampler can be Variant Call
Format, dbSNP ID or tab-delimited chromosome coordinates. For
matching properties, MAF and its allowed deviation are mandatory,
while others are optional. vSampler also provides other options such
as matching variant type (SNP/Indels). The output of vSampler is
comprised of a main file of each input variant followed by all its
controls per line, an annotation file of all variants and correspond-
ing annotations, a configuration file and an excluding file of all in-
put variants unfound in the annotation database. In addition,

the web server provides visualization of the distribution of each
matching property of input and matched control variants (see
Supplementary Fig. S4 and web server documentation for more
details).

5 Benchmark and usage examples

vSampler can process large number of queries much more efficiently
than other tools. Benchmarking on the runtime of vSampler and
that of SNPsnap demonstrated that vSampler is 3–439 times faster
than SNPsnap depending on different query settings (Supplementary
Table S2).

Sampling of matched control variants can help avoid spurious
GWAS enrichment analysis results and we simulated a usage ex-
ample similar to Pers et al. (2015). A GWAS was simulated with
randomly distributed phenotypes without genetic basis, and index
independent variants were selected by clumping. GWAS loci for
index independent variants were defined and Fisher’s exact test
showed that a set of genes mapped to GO term ‘negative regulation
of transcription, DNA-templated’ were significantly enriched (odds
ratio¼2.11, P-value¼0.0026) in these loci (see Supplementary Notes
and Supplementary Table S3 for details). 10 000 sets of matched
control variants were sampled by vSampler for the GWAS independ-
ent variants to construct the null fold enrichment distribution and
an insignificant empirical P-value of 0.3923 was got as we expected.

vSampler is also able to help assess the enrichment of target var-
iants in functional regions (Schmidt et al., 2015). eQTL enrichment
in chromatin states of relevant cell types was evaluated using
vSampler for illustration. We used the whole blood eQTLs and 15-
state chromatin states data of 27 blood related cell types to perform
the enrichment analysis. By calculation of enrichment scores based
on the eQTL variants and the sampled 1000 sets of control variants
by vSampler, we found that whole blood eQTLs are much more
enriched in 8 active states than 7 repressed states in blood related
cell types as expected (see Supplementary Fig. S5, Supplementary
Table S4 and Supplementary Notes for more details).

The comprehensive annotations provided by vSampler as match-
ing properties can also help to identify spurious results because of
annotation correlation. Variants falling within DNase I hypersensi-
tive sites (DHSs) of GM12878 lymphoblastoid cells were randomly
sampled (denoted as DHS variants). We then evaluated the enrich-
ment of these DHS variants in histone modification H3K4me3 in
the same cell type by sampling control variants matching for only
MAF and control variants matching for both MAF and DHS as a
comparison. It turned out that when relying on control variants
matching for only MAF, it yields an empirical P-value of <0.001
while when using control variants matching for both MAF and
DHS, an insignificant P-value of 0.368 was obtained, which correct-
ly identified that the enrichment of the DHS variants in H3K4me3
resulted from the correlation between DHS and H3K4me3, instead
of an independent enrichment in H3K4me3 (see Supplementary
Notes for more details).

In addition to the above examples of enrichment analysis,
matched variant sampling is also used for construction of negative
datasets for the training and testing of functional variant prediction
models such as GWAVA (Ritchie et al., 2014) and cepip (Li et al.,
2017). More specifically, in GWAVA, three models were trained
based on corresponding type of control SNVs including random
SNVs, SNVs matched for DTCT with positive data and SNV
matched for genomic region with positive data, while most test data
of GWAVA was established by sampling SNVs match for DTCT. In
cepip, four cell type-specific models were established using different
controls and matched epigenomic features. These models built with
different variant sampling strategies demonstrated distinct perform-
ance and facilitated the analysis of feature importance (see
Supplementary Notes for more details).
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Supplementary Notes 

 

Database construction 

Annotation database 

vSampler used publicly available genotype call sets of AFR, AMR, EAS, EUR, and SAS super 

populations from 1000 Genomes Project phase 3 release 20130502 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/; release date 05/02/2013; sample 

size: AFR: 645, AMR:346, EAS: 497, EUR: 495, SAS:486) and processed these call sets using 

bcftools. We first split multi-allelic variants into multiple bi-allelic variants and then left-

aligned and normalized reference and alternative alleles of all variants. Duplicate variants that 

map to the same position with identical reference and alternative alleles were removed. Finally, 

the annotation database contained 81,647,035 variants for genome build GRCh37 (hg19) and 

78,122,255 variants for genome build GRCh38 (hg38). 

Sampling database 

The number of variants in the annotation database was too large to be feasible for the sampling 

process. We kept only variants with MAF > 0.01 of the annotation database to construct the 

sampling database (GRCh37 (hg19): 16,750,259 variants for AFR population, 11,184,049 

variants for AMR population, 8,668,864 variants for EAS population, 9,808,459 variants for 

EUR population and 10,264,032 variants for SAS population; GRCh38 (hg38): 14,399,202 

variants for AFR population, 9,464,290 variants for AMR population, 7,892,804 variants for 

EAS population, 8,873,459 variants for EUR population and 9,124,174 variants for SAS 

population). 

 

Annotation of variant properties  

Detailed annotation process of variant properties is described below. Distributions of MAF, 

DTCT, gene density, number of variants in LD and GC content are shown in Supplementary 

Figure S3. It should be noted that variants in annotation database and sampling database of 

different populations are different, and the choice of population would also affect the value of 

MAF, gene density (when using LD to define variant loci) and number of variants in LD. 



Minor allele frequency 

Variants’ MAF of EUR, EAS and AFR population were computed based on allele frequency 

information from 1000 Genomes Project phase 3 release as described in database construction 

section.  

Distance to closest transcription start site 

All 5’ transcription start sites were defined according to GENCODE v32 and then we 

calculated variants’ distance to the closest 5’ transcription start sites. 

Gene density 

Gene density refers to number of genes overlapping with variant loci. Genes were extracted 

from GENCODE v32, and variant loci were defined by LD thresholds (r² > (0.1, 0.2, …, 0.9)) 

or physical distance (window size of 100, 200, ..., 1000 kb).  

Number of variants in LD 

Number of variants in LD were calculated using LD thresholds (r² > (0.1, 0.2, …, 0.9)). 

GC content 

GC content of variants were computed with various window sizes (100bp, 200bp,...,500bp) 

based on 5 base GC content file from UCSC Genome Browser 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/gc5Base/hg19.gc5Base.txt.gz for hg19, 

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.gc5Base.wigVarStep.gz for 

hg38). 

Cell type specific epigenomic marks 

Annotation of cell type-specific epigenomic marks is binary indicator of whether variants fall 

within selected cell type-specific epigenomic marks. There are 6 cell type specific epigenomic 

marks including DNase I hypersensitive sites (DHSs) and histone modifications H3K4me1, 

H3K4me3, H3K36me3, H3K27me3 and H3K9me3, and each covering 127 tissues/cell types. 

All cell type specific epigenomic mark data were downloaded from the NIH Roadmap 

Epigenomics Project (https://egg2.wustl.edu/roadmap/web_portal/), and more details of the 

127 tissues/cell types can be found in Consolidated_EpigenomeIDs_summary_Table 

(https://docs.google.com/spreadsheets/d/1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-

N6gOM/edit#gid=15) in the website (https://egg2.wustl.edu/roadmap/web_portal/meta.html) 

of NIH Roadmap project. 16 out of 127 epigenomes (E114-E129) in the RoadMap Project were 

directly borrowed from ENCODE project. 

https://egg2.wustl.edu/roadmap/web_portal/
https://docs.google.com/spreadsheets/d/1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15
https://docs.google.com/spreadsheets/d/1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15
https://egg2.wustl.edu/roadmap/web_portal/meta.html


eQTL 

Annotation of eQTL significance is binary indicator of whether variants are significant eQTL 

variants. Significant eQTL variants data of 49 tissues/cell types were downloaded from GTEx 

project v8 

(https://storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis_v8

_eQTL.tar). Significance of eQTL variants were determined based on permutation by GTEx 

project. Genome coordinates of GTEx eQTLs were converted from hg38 to hg19 by PyLiftover 

0.4, a python implementation of UCSC LiftOver tool. The number of eQTLs we lost in this 

process for each tissue was summarized in Supplementary Table S5. 

Coding/noncoding region 

We first identified variant effects using Jannovar, and then variants effects were classified as 

coding, non-coding and others as listed in Supplementary Table S6. 

 

Data structure and index system 

The bin-wise chunk-indexed data structure means that all variants in the sampling database are 

first sorted by MAF and then assigned to MAF bins ([0.01, 0.02), [0.02, 0.03), …, [0.49, 0.50]). 

For variants belonging to each MAF bin, they have many properties and the data of each 

property of variants are treated as one data chunk (property data chunk). Every property data 

chunk of variants in each MAF bin are indexed and stored in a linear structure. Fitting in with 

the linear data structure, the index system recorded the address of every property data chunk 

within each MAF bin and can quickly retrieve any single property data without loading all of 

them. In other words, based on the index system, vSampler can randomly access only necessary 

MAF bins and property data chunks. For example, if there 50 input variants in MAF bin [0.34, 

0.35) and the matching properties and their allowed deviations are MAF +- 0.01, distance to 

closest transcription start site (DTCT) +- 1000bp, then only variants of sampling database in 

MAF bins [0.33, 0.34), [0.34, 0.35), [0.35, 0.36) would be extracted and only property data 

chunks of MAF and DTCT would be retrieved, thus significantly reduces disk reads.  

 

Searching strategy 

We used a read-store-delete-in-order algorithm which means that, for each MAF bin of input 

variants, corresponding MAF bins of sampling database are read and stored as a queue in 

computer memory. Since MAF bins of input variant are processed in order, when processing 

the next MAF bin of input variants, vSampler would compare the required MAF bins of 



sampling database with the data in the queue and delete unwanted MAF bins in the queue. For 

example, if there are 50 input variants in MAF bin [0.34, 0.35), 50 input variants in MAF bin 

[0.35, 0.36) and the matching properties and their allowed deviations are MAF +- 0.01, variants 

of sampling database in MAF bins [0.33, 0.34), [0.34, 0.35), [0.35, 0.36) would first be read 

and stored in queue. Then for MAF bin [0.35, 0.36) of input variants, variants of sampling 

database in MAF bins [0.34, 0.35), [0.35, 0.36), [0.36, 0.37) are required. The queue would 

delete MAF bin [0.33, 0.34) and read variants of MAF bin [0.36, 0.37) from sampling database. 

This strategy makes sure that vSampler wouldn’t read the same MAF bins of sampling database 

repeatedly.  

 

GWAS simulation 

We used 1000 Genome phase 3 genotype data of EUR population (minor allele frequency > 

0.01) and simulated random phenotype following standard normal distribution (N(0,1)) 

without genetic basis. PLINK was used to perform association test and clumping (PLINK--

clump-p1 1e-4 --clump-kb 500 --clump-r2 0.01). Finally, we got 248 independent variants. 

 

Usage example processing  

Example 1: GWAS-associated gene enrichment analysis 

All genes mapped to Gene Ontology (GO) terms were downloaded using Ensembl BioMart, 

which resulted in 23,393 genes mapped to 14,224 GO terms. We further extracted 17,747 genes 

overlapped with variants of vSampler sampling database, and 465 genes of them were mapped 

to negative regulation of transcription (DNA-templated) GO term (GO: 0045892). To perform 

enrichment analysis, overlapped genes of GWAS variants were defined as the union of: (1) 

nearest gene to each GWAS variant; (2) genes overlapping with each GWAS locus (locus was 

defined by flank physical distance of 50 kb). We then retrieved 380 overlapped genes of 248 

independent GWAS variants. To test the significance of enrichment of negative regulation of 

transcription (DNA-templated) genes in simulated GWAS loci, a contingency table 

(Supplementary Table S3) was constructed to calculate odds ratio and to calculate P-value by 

one-side Fisher’s exact test, which gave an odds ratio of 2.11 and corresponding P-value of 

0.0025803. 

 

vSampler was used to sample 10,000 set of matched control variants for 248 GWAS 

independent variants using default parameters (MAF deviation: 0.05, DTCT deviation: 5000, 



Exclude Input: True, GC deviation: 0.05), and odds ratio could be calculated for each set as 

described above. This resulted in a null distribution of 10,000 odds ratios and 3932 of them 

were larger than 2.11, which indicated an empirical P-value of 0.3923. 

 

Example 2: eQTL-associated functional annotation enrichment analysis 

We used a set of significant whole blood eQTLs identified by FastQTL from GTEx v8, and 

only retained eQTLs overlapped with vSampler sampling database. 10000 sets of control 

variants were then sampled by vSampler using default parameters (MAF deviation: 0.05, 

DTCT deviation: 5000, Exclude Input: True, GC deviation: 0.05). Cell type-specific 15-state 

chromatin states data were downloaded from NIH Roadmap Epigenomics Project 

(http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/co

reMarks/jointModel/final/all.mnemonics.bedFiles.tgz) which includes 27 blood related cell 

types. For each chromatin state of each cell type, number of eQTL variants/control variants 

falling within the chromatin state region was calculated and denoted as overlapping eQTL 

number and overlapping control number respectively, and the overlapping control numbers of 

10000 sets of control variants was used to construct null distributions. Then for each chromatin 

state of each cell type, the enrichment score was calculated as (overlapping eQTL number) / 

(mean overlapping control number of 10000 sets), and the empirical P-value was computed 

based on the null distributions. The computed P-values were corrected for multiple testing by 

Bonferroni correction for 15*27. Enrichment scores and P-values are shown in Supplementary 

Figure S5 and Supplementary Table S4 respectively. The heatmap of enrichment scores 

indicates that blood eQTLs are more enriched in 8 active states (1_TssA, 2_TssAFlnk, 

3_TxFlnk, 4_Tx, 5_TxWk, 6_EnhG, 7_Enh, 8_ZNF-Rpts) than 7 repressed states (9_Het, 

10_TssBiv, 11_BivFlnk, 12_EnhBiv, 13_ReprPC, 14_ReprPCWk, 15_Quies) in blood-related 

cell types as expected. 

 

Example 3: Identification of spurious enrichment resulting from annotation correlation 

We first randomly sampled 1000 variants falling within DHS regions (defined by narrowPeak 

file) of GM12878 lymphoblastoid cells (E116) as the positive dataset (denoted as DHS 

variants). Then 1000 sets of control variants matching for only MAF (MAF deviation: 0.05) 

were sampled by vSampler each with the same sample size as DHS variants (denoted as random 

controls). Similarly, 1000 sets of control variants matching for both MAF (MAF deviation: 

0.05) and DHS regions of the same cell type were generated with vSampler (denoted as DHS-

matched controls). Then number of DHS variants residing in histone modification H3K4me3 



regions (defined by narrowPeak file) of GM12878 lymphoblastoid cells (E116) was computed 

to be 357 (denoted as positive overlapping number). Numbers of variants from each set of 

random controls and DHS-matched controls falling in H3K4me3 regions of the same cell type 

were calculated (denoted as random overlapping number and DHS-matched overlapping 

number) and used to construct random null distribution and DHS-matched null distribution 

respectively. For the random null distribution, all 1000 random overlapping numbers were 

smaller than 357 and thus resulted in an empirical P-value of < 0.001. In comparison, for the 

matched-null distribution, 368 DHS-matched overlapping numbers were larger than the 

positive overlapping number 357 and led to an insignificant empirical P-value of 0.368, which 

was consistent with the fact that these DHS variants were enriched in H3K4me3 regions as 

result of the correlation between DHS and H3K4me3, rather than an independent enrichment.  

 

Introduction of sampling strategies in GWAVA and cepip 

In GWAVA (Ritchie, et al., 2014), when constructing the training dataset, ‘regulatory 

mutations’ from the Human Gene Mutation database (HGMD) were used as the disease-

implicated set, while three control sets were generated using the idea of matched control 

sampling based on common SNVs from 1000 Genomic Projects. The first control set is 

established by randomly selecting SNVs from the whole genome. The second control set is 

established by randomly selecting SNVs matching for DTCT with variants of the disease-

implicated set. The third control set is comprised of all variants within 1000 bp around each 

variants of the disease-implicated set. Three classifiers were built on the basis of the disease-

implicated set and each control set respectively, and they showed distinct performance by cross 

validation (AUC of 1st control set: 0.97, AUC of 2nd control set: 0.88, AUC of 3rd control set: 

0.71). Furthermore, feature importance of three classifiers with different control sets provides 

interesting biological insights. For example, DTCT is the most important feature for classifier 

based on the 1st control set, and it’s still within the top 3 most important features in other two 

classifiers even if the second control set is generated by matching for DTCT. DNase1 footprints 

is only highly ranked for the third classifier, which indicates that when disease-implicated and 

controls are more physically close and similar to each other, this kind of specific annotation 

becomes more discriminating. In addition, although there is only minor difference between the 

average conservation scores of the disease-implicated set and any control set, they are 

consistently highly ranked across three classifiers irrespective of the control sets, which 



indicates the importance of conservation score for functional variants prediction even when 

conditioning on other features.  

 

In cepip (Li, et al., 2017), fine-mapped eQTL SNPs were selected as the positive data, and two 

kinds of control sets were constructed with the idea of matched control sampling, a random 

control set generated by random sampling around the same TSS (within 10kb) and matching 

for MAF with the positive variants; a strict control set generated by random sampling of 

variants matching for MAF, DTCT, GC content while excluding any variants in high LD with 

positive variants. With the two types of control sets, the author identified consistently important 

features, “selected chromatin features”, across 11 eQTL datasets and the “selected chromatin 

features” were then employed to construct four generalized models. More specifically, the four 

generalized models were established by using (1) random control; (2) strict control; (3) random 

control without DHS-related features and (4) strict control without DHS-related features. Test 

on an independent eQTL dataset demonstrated that the generalized model with random control 

has the highest partial AUC (0.626) than others (0.619, 0.624, 0.609).  

 

Software, web server and code availability 

vSampler local program, web server and codes are available at http://mulinlab.org/vsampler 

or https://github.com/mulinlab/vSampler. 

http://mulinlab.org/vsampler
https://github.com/mulinlab/vSampler


Supplementary Tables 

 

Supplementary Table S1 – List of publications utilizing matched variant sampling with different matching properties 

Task Purpose Matching properties Reference 

GWAS significant noncoding SNPs 

from the NHGRI-EBI GWAS 

Catalog 

Enrichment in DHS MAF, distance to closest TSS, genomic 

feature localization 

(Maurano, et al., 

2012) 

Genome-wide significant SNPs 

associated with platelet and 

erythrocyte phenotypes 

Enrichment in nucleosome-depleted regions (NDR) MAF, distance to a TSS, number of 

proxy SNPs 

(Paul, et al., 

2013) 

66128 common disease-associated 

SNPs 

Enrichment in NFκB Binding Regions MAF, distance to a TSS (Karczewski, et 

al., 2013) 

Genome-wide significant variants 

associated with migraine 

Enrichment in DHS MAF, distance to closest TSS, GC 

content 

(Anttila, et al., 

2013) 

Independent lead SNPs associated 

with myocardial infarction or 

coronary artery disease 

Enrichment in histone marks H3K27ac, H3K4me3, H3K9ac MAF, number of SNPs in LD, distance 

to the nearest gene, gene density 

(Won, et al., 

2015) 

methylation QTLs Enrichment in eQTLs MAF, number of SNPs in LD, distance 

to the nearest gene, gene density 

(Zaghlool, et al., 

2016) 

Independent SNPs associated with 

33 GRASP GWAS phenotypes 

Enrichment in eQTLs MAF, number of SNPs in LD, distance 

to the nearest gene 

(DeBoever, et al., 

2017) 

eQTLs of iPS cell  Enrichment in chromatin states, transcription factor binding sites, 

NHGRI–EBI GWAS catalogue variants,  

MAF, number of SNPs in LD, distance 

to the nearest gene, gene density 

(Kilpinen, et al., 

2017) 



Genome-wide significant variants 

associated with Alzheimer’s disease 

Enrichment in open chromatin regions, H3K4me3, H3K4me1, 

H3K27ac 

MAF, number of SNPs in LD, distance 

to the nearest gene, gene density 

(Tansey, et al., 

2018) 

 eQTLs of failing and nonfailing 

human heart tissue 

Enrichment in NHGRI-EBI GWAS Catalog variants Number of variants in LD, gene density (Cordero, et al., 

2019) 

cis-eQTL of liver tissue Enrichment in H3K4me3 and H3K27ac peaks of liver tissue MAF, gene density, distance to the 

nearest gene, number of variants in LD 

(Caliskan, et al., 

2019) 

Sentinel SNPs associated with 

coronary artery disease and blood 

pressure 

Comparison of distance from test SNPs to closest TAD boundary MAF, gene density, gene proximity, 

number of variants in LD 

(Lalonde, et al., 

2019) 

SNPs associated with obsessive–

compulsive disorder  

Enrichment in immune or brain eQTLs MAF, gene density, distance to the 

nearest gene, and number of variants in 

LD 

(Khramtsova, et 

al., 2019) 

PICS identified candidate causal 

SNPs 

Enrichment in DeepFIGV high absolute z-score (absolute z-score 

above a given cutoff) 

MAF, gene density, distance to the 

nearest gene, number of SNPs in LD 

(Hoffman, et al., 

2019) 

SNVs associated with schizophrenia 

and autism spectrum disorders 

(ASDs) 

Enrichment in looping class size of the LD block, MAF, distance to 

the nearest gene, gene density 

(Beagan, et al., 

2020) 

Independent SNPs from the fine-

mapped m6A QTLs 

Enrichment in m6A consensus motif (RRACH), binding sites of 

RNA-binding proteins (RBPs), riboSNitches (genetic variants 

changing RNA secondary structure), predicted miRNA binding sites 

MAF, number of SNPs in LD, distances 

to the nearest gene, gene density, SNP 

locations relative to genes 

(Zhang, et al., 

2020) 

 

 



Supplementary Table S2 – Runtime comparison between vSampler and SNPSnap. 

Elapsed CPU times (in seconds) for vSampler (running in 1 thread of Intel Xeon E5 2650 V4 

CPU) and SNPSnap with variable number of queries and sampling number 

Method 
Sampling 

number 
Number of queries 

 10 100 1000 10000 50000 100000 500000 

vSampler 1 10.6 13.6 60.0 516.4 2572.5 4867.4 24996.4 

SNPSnap 1 60 480 198 15120 NAa NA NA 

vSampler 10 9.8 13.2 60.6 500.8 2629.0 5000.4 25650.4 

SNPSnap 10 60 540 3960 28680 NA NA NA 

vSampler 100 10.0 13.6 61.6 505.2 2688.0 5104.4 27191.6 

SNPSnap 100 120 480 3360 33780 NA NA NA 

vSampler 1000 10.4 14.2 63.8 535.0 2849.5 5597.8 30727.8 

SNPSnap 1000 140 600 28020 54780 NA NA NA 

vSampler 10000 10.4 16.0 84.6 754.4 4083.5 8229.6 41149.0 

SNPSnap 10000 180 915 11712 NA NA NA NA 

a When number of queries is larger than 10000, or when the number of queries is 10000 and 

sampling number is 10000, SNPSnap will collapse and thus the runtime is marked as NA 

 

  



Supplementary Table S3 - Contingency table for enrichment analysis. Values used in 

Fisher’s exact test to compute enrichment of negative regulation of transcription (DNA-

templated) genes (GO: 0045892) in simulated GWAS loci. 

 Mapped to GO term Not mapped to GO term Total 

Overlapped genes 20 360 380 

Non-overlapped genes 445 16922 17367 

Total 465 17282 17747 



Supplementary Table S4 – P-values for enrichment scores of blood eQTLs in 15 chromatin states of 27 blood related cell types 

Cell Types 1_TssA 2_TssAFlnk 3_TxFlnk 4_Tx 5_TxWk 6_EnhG 7_Enh 8_ZNF-

Rpts 

9_Het 10_TssBiv 11_BivFlnk 12_EnhBiv 13_ReprPC 14_ReprPCWk 15_Quies 

BLD.CD14.MONO 0.0405 0.0405 1 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 1 

BLD.CD14.PC 0.0405 0.0405 1 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 0.0405 1 1 1 1 

BLD.CD15.PC 0.0405 0.0405 0.4455 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 0.5265 0.0405 1 1 1 

BLD.CD19.CPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.9315 1 0.0405 1 1 1 

BLD.CD19.PPC 0.0405 0.0405 1 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.486 0.0405 1 1 1 1 

BLD.CD3.CPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.CD3.PPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 

BLD.CD34.CC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.CD34.PC 0.0405 0.0405 1 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.CD4.CD25.CD127M.TREGPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 

BLD.CD4.CD25I.CD127.TMEMPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.567 0.324 1 1 1 1 

BLD.CD4.CD25M.CD45RA.NPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.891 1 1 1 1 1 

BLD.CD4.CD25M.CD45RO.MPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.CD4.CD25M.IL17M.PL.TPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.972 0.081 1 1 1 1 

BLD.CD4.CD25M.IL17P.PL.TPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.CD4.CD25M.TPC 0.0405 0.0405 1 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.405 1 1 1 1 

BLD.CD4.MPC 0.0405 0.0405 1 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.CD4.NPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.9315 1 1 1 1 1 

BLD.CD56.PC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 0.0405 0.2835 1 1 1 

BLD.CD8.MPC 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.CD8.NPC 0.0405 0.0405 1 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.DND41.CNCR 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 1 

BLD.GM12878 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 0.8505 1 1 1 1 

BLD.K562.CNCR 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.MOB.CD34.PC.F 0.0405 0.0405 1 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.MOB.CD34.PC.M 0.0405 0.0405 0.405 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 1 1 1 1 1 1 

BLD.PER.MONUC.PC 0.0405 0.0405 1 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 0.2835 0.0405 1 1 1 1 

 



Supplementary Table S5 - Number of eQTLs lost during liftover from hg38 to hg19 

Tissue LiftOver Failed eQTLs Number/% 

Adipose Subcutaneous 8617/3.197984 

Adipose Visceral Omentum 6706/3.7559159 

Adrenal Gland 3725/5.2933737 

Artery Aorta 5661/3.2706474 

Artery Coronary 3444/6.6499324 

Artery Tibial 7022/2.5419373 

Brain Amygdala 1381/7.0448401 

Brain Anterior cingulate cortex BA24 1868/5.835494 

Brain Caudate basal ganglia 3006/4.7238155 

Brain Cerebellar Hemisphere 4042/5.3177214 

Brain Cerebellum 4530/4.2302053 

Brain Cortex 3396/4.5245011 

Brain Frontal Cortex BA9 2288/4.5819565 

Brain Hippocampus 1971/5.6958733 

Brain Hypothalamus 2700/7.4474541 

Brain Nucleus accumbens basal ganglia 3258/5.0812564 

Brain Putamen basal ganglia 2794/6.182647 

Brain Spinal cord cervical c-1 763/3.2207683 

Brain Substantia nigra 789/5.0325297 

Breast Mammary Tissue 5933/4.3644255 

Cells Cultured fibroblasts 7335/2.8231083 

Cells EBV-transformed lymphocytes 1017/3.595164 

Colon Sigmoid 5367/4.4798544 

Colon Transverse 6240/4.4853686 

Esophagus Gastroesophageal Junction 5020/3.9685991 

Esophagus Mucosa 7490/3.195747 

Esophagus Muscularis 7533/3.3727334 

Heart Atrial Appendage 5375/3.8904169 

Heart Left Ventricle 4628/3.8623314 

Kidney Cortex 241/5.1016088 



Liver 2110/4.7516101 

Lung 7477/3.498339 

Minor Salivary Gland 2047/7.8973765 

Muscle Skeletal 6443/2.593675 

Nerve Tibial 7983/2.53675 

Ovary 2524/6.8427045 

Pancreas 4799/4.3970643 

Pituitary 4543/5.1560549 

Prostate 3716/6.3085699 

Skin Not Sun Exposed Suprapubic 7950/3.2383815 

Skin Sun Exposed Lower leg 9146/3.0570021 

Small Intestine Terminal Ileum 3027/7.030379 

Spleen 5402/5.7231852 

Stomach 4817/5.0244075 

Testis 9547/4.112445 

Thyroid 9349/2.7472899 

Uterus 883/4.7740052 

Vagina 2110/10.9400114 

Whole Blood 6602/2.9090364 

 

  



Supplementary Table S6 – The variant classification according to Jannovar variant effect 

Coding Noncoding Others 

TRANSCRIPT_VARIANT 
NON_CODING_TRANSCRIPT_VARIAN

T 

MOBILE_ELEMENT_DELETIO

N 

EXON_VARIANT REGULATORY_REGION_ABLATION SEQUENCE_VARIANT 

GENE_VARIANT INTERGENIC_VARIANT 
DIRECT_TANDEM_DUPLICAT

ION 

INTRON_VARIANT 
REGULATORY_REGION_AMPLIFICAT

ION 
STRUCTURAL_VARIANT 

CODING_SEQUENCE_VARIANT MIRNA CUSTOM 

CONSERVED_INTRON_VARIANT TFBS_AMPLIFICATION 
MOBILE_ELEMENT_INSERTIO

N 

SPLICING_VARIANT CONSERVED_INTERGENIC_VARIANT CHROMOSOME 

CODING_TRANSCRIPT_VARIANT TFBS_ABLATION _SMALLEST_LOW_IMPACT 

INTRAGENIC_VARIANT TF_BINDING_SITE_VARIANT 
_SMALLEST_MODERATE_IMP
ACT 

FIVE_PRIME_UTR_PREMATURE_START_CODON_G

AIN_VARIANT 
INTERGENIC_REGION INSERTION 

THREE_PRIME_UTR_EXON_VARIANT DOWNSTREAM_GENE_VARIANT INVERSION 

THREE_PRIME_UTR_INTRON_VARIANT UPSTREAM_GENE_VARIANT TRANSLOCATION 

FIVE_PRIME_UTR_INTRON_VARIANT REGULATORY_REGION_VARIANT COPY_NUMBER_CHANGE 

STOP_RETAINED_VARIANT 
NON_CODING_TRANSCRIPT_INTRON

_VARIANT 
MNV 

SYNONYMOUS_VARIANT 
NON_CODING_TRANSCRIPT_EXON_

VARIANT 
COMPLEX_SUBSTITUTION 

INITIATOR_CODON_VARIANT  FEATURE_TRUNCATION 

SPLICE_REGION_VARIANT  
CHROMOSOME_NUMBER_VA

RIATION 

CODING_TRANSCRIPT_INTRON_VARIANT  _SMALLEST_HIGH_IMPACT 

FIVE_PRIME_UTR_EXON_VARIANT  
INTERNAL_FEATURE_ELONG

ATION 

DISRUPTIVE_INFRAME_DELETION   

DISRUPTIVE_INFRAME_INSERTION   

INFRAME_DELETION   

MISSENSE_VARIANT   

FIVE_PRIME_UTR_TRUNCATION   

INFRAME_INSERTION   

THREE_PRIME_UTR_TRUNCATION   

FRAMESHIFT_ELONGATION   

EXON_LOSS_VARIANT   

SPLICE_DONOR_VARIANT   

TRANSCRIPT_AMPLIFICATION   

FRAMESHIFT_VARIANT   

STOP_GAINED   

SPLICE_ACCEPTOR_VARIANT   

TRANSCRIPT_ABLATION   

STOP_LOST   

RARE_AMINO_ACID_VARIANT   

FRAMESHIFT_TRUNCATION   

START_LOST   



Supplementary Figures 

 
Supplementary Figure S1 – A. Data structure of sampling database. Each gray solid box 

represents one data chunk indexed by the index system. DTCT: distance to closest transcription 

start site; B. vSampler pipeline. We set MAF deviation to ± 0.02 and DTCT deviation to ± 

5,000 for illustration. It’s worth noting that MAF bins of input variants are different from MAF 

bins of sampling database; C. Read-store-delete-in-order algorithm. When vSampler 

processes from MAF bin [0.21, 0.22) of input variants to MAF bin [0.23, 0.24) of input variants, 

the change of queue of sampling database MAF bins in computer memory is shown. MAF 

deviation is set to ± 0.02 (see Supplementary Notes for more details). 

 



 

 
 



Supplementary Figure S2 – Size of control pool corresponding to varying values of 

matching property deviations for sampling database of EUR population. Size of control 

pool correspond to varying values of deviation of MAF, DTCT, GC content (window size: 

100bp, 200bp, 300bp, 400bp, 500bp), Gene density (Physical distance window size: 100kb, 

200kb, …, 1000kb, LD threshold: 0.1, 0.2, …, 0.9) and Number of variants in LD (LD 

threshold: 0.1, 0.2, …, 0.9). The bar plots show the mean and standard error of size of control 

pool, which was estimated by using 1000 random variants as the input data to query the 

sampling database of EUR population with varying matching property deviations. It’s 

noteworthy that since the MAF is a mandatory matching property and its largest deviation is 

0.1, MAF deviation is always set to 0.1 when we estimate the size of control pool with other 

matching properties. 

 

 



 

 



 

 



 
  



Supplementary Figure S3 - Histograms of distributions of variant properties for sampling 

database of EUR population. Distributions of MAF, DTCT, GC content (window size: 100bp, 

200bp, 300bp, 400bp, 500bp), Gene density (Physical distance window size: 100kb, 200kb, …, 

1000kb, LD threshold: 0.1, 0.2, …, 0.9) and Number of variants in LD (LD threshold: 0.1, 

0.2, …, 0.9) were plotted for all variants in sampling database of EUR population. 

 

 
 
 
 







 
  



Supplementary Figure S4 - Example of variant sampler visualization function. 1000 

random variants were used as query variants and matching property deviations were set as 

following, MAF deviation: 0.05, DTCT deviation: 5000, Gene density deviation: 5 (physical 

distance window size: 100KB), Number of variants in LD deviation: 50 (LD threshold: 0.1), 

GC content deviation: 0.01 (window size: 100bp). The distribution of MAF, DTCT, Gene 

density, Number of variants in LD and GC content for both query variants and sampled controls 

were shown. 

 



Supplementary Figure S5 - Enrichment scores of blood eQTLs in 15 chromatin states of 

27 blood related cell types. The scores in the heatmap are in log2-transformed scale. 
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