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Abstract
Understanding the genetic basis of human traits/diseases and the underlying mechanisms of how these traits/diseases
are affected by genetic variations is critical for public health.Current genome-wide functional genomics data uncovered
a large number of functional elements in the noncoding regions of human genome, providing new opportunities to
study regulatory variants (RVs). RVs play important roles in transcription factor bindings, chromatin states and epigen-
etic modifications. Here, we systematically review an array of methods currently used to map RVs as well as the com-
putational approaches in annotating and interpreting their regulatory effects, with emphasis on regulatory single-
nucleotide polymorphism.We also briefly introduce experimental methods to validate these functional RVs.

Keywords: regulatory variant; genetic mapping; transcriptional gene regulation; chromatin state; functional prediction; func-
tion validation

INTRODUCTION
The advance in next-generation sequencing projects,

such as the 1000 Genomes Project and the Personal

Genome Project, have identified tens of millions of

human DNA polymorphisms in populations and

millions of variants per individual [1–3].

Nevertheless, the biological function of these vari-

ants, including both germline and somatic mutations,

is largely unknown. In the next step, it is important

to interpret the underlying molecular function, evo-

lution and pathways that link these variants to dis-

eases/traits. It has been well established that variants

altering the amino acids of protein-coding genes play

an important role in molecular pathogenesis [4].

However, by looking at the genomic location of

the associated variants detected in recent genome-

wide association study (GWAS), �88% of them fall

outside of protein-coding regions [5, 6], which

indicates the significance of studying the function

of these variants.

The functions of genetic variations, which do not

directly change the protein sequence, are quite

diversified in its genomic loci, and are involved in

almost all processes of gene regulation, from
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transcription to posttranslation [7, 8]. One type of

variants that are intensively investigated recently lo-

cates near the splicing sites in either exon or intron,

which directly affect the splicing events and result in

aberrant transcript isoform abundance [9–11].

Recent reviews have summarized the association

and mechanism between these splicing variants and

disease [12, 13]. The noncoding variations located at

RNA-producing regions can also influence the bio-

logical activities in posttranscriptional processing and

translational initiation. The variations altering RNA

secondary structures can cause different activities of

alternative splicing, RNA folding, functional site

accessibility, and the natural selection for specific

RNA shapes many of variable sites including 30-,

50-untranslated region (30-, 50-UTR), microRNA

(miRNA) binding site and RNA-binding proteins

recognition motif genome-widely [14]. An increas-

ing number of studies have demonstrated that gen-

etic variants in the 30-UTR or coding region of

messager RNA (mRNA) [15], or miRNA body

[16] can disrupt existing or create new mRNA–

miRNA binding sites, and promote disease develop-

ment and cancer pathogenesis. Genetic variants in

the 50-UTR also frequently change the global struc-

ture of the untranslated region and affect the recog-

nition of translation initiation complex [17, 18]. In

addition, genetic variants can affect the function of

long intergenic non-coding RNAs (lincRNA) in a

tissue-specific manner [19, 20]. Furthermore, the

synonymous single nucleotide polymorphisms

(sSNPs) that are present in the mature mRNA re-

gions may affect different translational activities.

sSNP may change the translational rate according

to differential transfer RNA abundance determined

by codon usage bias [21–23]; it can also alter the

secondary structure of mRNA and the efficiency of

protein expression [24], as well as the co-translational

folding [25]. Importantly, with the explosive growth

of next-generation sequencing (NGS) studies, a

distinct group of genetic variants that affect gene ex-

pression have been identified. Because of their signifi-

cant roles in regulating gene expression levels, these

regulatory variants (RVs) attracted great interest of

functional geneticists over the past decade [26, 27].

RVs play many roles in transcription, including

transcription factor binding, chromatin states and

epigenetic modifications [28]. Trait/disease-

associated SNPs (TASs) detected by GWAS are

significantly enriched in the regions that harbor func-

tional elements, such as transcriptional factor binding

sites (TFBSs), DNase I hypersensitive sites (DHSs),

conservative regions and expression quantitative trait

loci (eQTLs) [29–32]. These results imply that RVs

in the linked regions of TASs may directly or indir-

ectly connect to different transcriptional regulation

events. Also, late studies showed that important

chromatin marks, such as H3K4me3 and H3K27ac,

and putative enhancer regions are phenotypically cell

type specific and are likely associated with TAS loci

in the relevant cell type of same disease/trait [33, 34].

Furthermore, population genetics studies demon-

strated that RVs are under strong natural selection

and affect gene expressions via local adaptation [35,

36]. Taken together, all these findings shed light on

importance of function investigation of RVs in

affecting gene regulation.

Recently, technological innovation, such as NGS

and high-throughput genotyping platforms [37, 38],

enable us to perform genome-wide genetic mapping

and large-scale functional profilings in multiple indi-

viduals/cell lines. In addition, many computational

methods are developed to help researchers in detect-

ing, annotating and prioritizing RVs with satisfactory

sensitivity and specificity [39–43]. In this review, we

will focus on current approaches to identify func-

tional RVs affecting transcriptional gene regulation.

As shown in Figure 1, various methods, from up-

stream variant genetic mapping to downstream an-

notation, as well as the final functional validation,

will be discussed for RV identification. We summar-

ize prevalent techniques of RV genetic mapping,

prioritization strategies using bioinformatics analysis

of genomic data, and we also briefly introduce cur-

rent experimental methods on functional RV valid-

ation in vitro and in vivo.

REGULATORY VARIANTS
GENETICMAPPING
Genetic mapping is the primary step to associate vari-

ant/gene markers with specific disease/trait, based

on genotype information from disease and control

groups. The methodology of RV genetic mapping

follows the same procedure of conventional map-

ping. We will first summarize these evolving genetic

mapping methods and highlight the differences and

difficulties of RV fine-mapping.

Whole-genome association test
Most RVs are conventionally thought to coopera-

tively influence human complex diseases and traits
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together with environmental factors [44]. Under the

common disease–common variant hypothesis, gen-

etics association studies are usually performed to map

the relationship between a phenotype and specific

genomic loci under case-control design. The merit

of case-control association test, compared with

family-based design, comes from the convenience

and feasibility to discover genetic susceptible loci

on a group of unrelated individuals with the same

trait. Technology advances have enabled us to carry

out high-throughput GWAS for many common

genetic variants [37]. Modern GWAS genotyping

chips typically contain 300 000–5 000 000 tag SNPs

that are selected from segments of human genome

with high linkage disequilibrium (LD), which make

it possible to identify susceptive genetic loci with-

out genotyping every SNP in the whole chromo-

some [45, 46]. However, in most of the time, tag

SNPs are not the functional ones for the investigated

phenotype, and the GWAS effect size only repre-

sents the significance of that locus in which tag

SNPs locate. Therefore, it can reasonably postu-

late that the immediate gene contains or is close to

the tag SNPs (with P-value <5E-8) could be the

causal gene associated with targeted disease/trait,

but it is hard to find out which SNP is the causal

mutation.

To identify the true functional SNP from tag SNP

(or GWAS SNP), we have to consider the haplotype

structure of the investigated population. The haplo-

type blocks of different human populations are quite

distinct. For example, European-descent populations

have more highly correlated SNPs and longer haplo-

type blocks than other populations such as African or

Asian. The recent International HapMap Project and

the 1000 Genomes Project have produced high-

quality genotyping data in large sample size of dif-

ferent human populations [1, 47]. The influence of

these projects, along with the evolving genotyping

technologies, led to wide-spread GWAS that have

identified over thousands of common variants asso-

ciated with many traits and diseases [5]. It also

enables us to systematically hunt for functional regu-

latory single-nucleotide polymorphisms (rSNPs)

given a GWAS SNP, by using population-specific

haplotype structures [48, 49]. Several statistical infer-

ence methods have been developed to fine-map

strongly associated SNPs in the corresponding LD

proxy. Genotype imputation can be used to infer

the untyped or missing SNPs [50–52], and to ex-

clude less significant SNPs in the same LD according

to likelihood ratio test [53]. With accumulation of

GWAS on the same or similar traits, meta-analysis

methods are frequently used to improve the power

of association study [54, 55].

GWAS is a routine method of association map-

ping to discover associated variants for common dis-

eases/traits; it has some distinct features in fine

mapping of rSNPs. First, after statistical fine-map-

ping, only a small fraction of associated SNPs are

nonsynonymous single nucleotide variants (nsSNV)

that can easily be linked to protein function, which

indicates that most of common disorders are caused

by gene regulatory mechanism and those rSNPs may

exert their function in transcriptional gene regulation

[6]. On the other hand, by mapping all GWAS

significant SNPs (P-value <5E-8) to the dataset of

HapMap3 and comparing the occurrences of these

SNPs in each function type, Li et al. found disease/

trait-associated rSNPs are less frequent than

Figure 1: The general framework of RVs in genetic mapping, prediction, prioritization and functional validation.
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associated nsSNV [56]. It reflects that GWAS has less

power to detect the putatively causal SNPs in the

regulatory regions, especially for intergenic SNPs.

Also, the haplotype frequency of a small effect size

rSNP locus could be low in the studied population.

Hence, we usually need a large sample size to

achieve genome-wide significance of rSNP even

for common phenotypes. Again, the function of an

rSNP on a trait can be modulated by one or more

other variants in long-range LD or unrelated locus by

epistasis, which makes independent test even

difficult.

As large-scale genome sequencing projects have

revealed large amount of rare variants in human

populations, the genetic effects of these low fre-

quency variants that were not included in current

GWAS chips have been proposed as main causes of

the ‘missing heritability’ [57–59]. With the continu-

ously reduced sequencing cost, whole-exome

sequencing (WES) and whole-genome sequencing

(WGS) have currently emerged to overcome the re-

strictions of GWAS chips, and are used to discover

rare and de novo disease-causal mutations for both

Mendelian disorders and complex diseases [60, 61].

Many new disease-associated variants/genes have

been identified by these technologies [62, 63].

Evidence has shown that rare variants involved in

complex disease etiology are more likely to be func-

tional than common variants [58, 59]. Many factors

can affect the statistical power to identify the disease

causal variant with low frequency including variant

effect size, sample size, genetic inheritance mode and

minor allele frequency (MAF). To efficiently test the

disease association of rare variants that are detected

by WES, WGS or low frequency variant genotyping

arrays, there are many statistical methods developed

by using burden tests, C-alpha test and their deriva-

tives [64–68]. It is anticipated that a large number of

common and rare regulatory variants with disease

association will be identified in the near future.

However, interpreting the function of these dis-

ease-associated rSNPs is still a big challenge, particu-

larly in downstream analysis and functional

validation. It requires different integrative resources

to represent, annotate and prioritize those TASs in

the post-GWAS era [56]. Some recent reviews have

emphasized on those parts [49, 69–71].

Linkage analysis
Linkage analysis has been originally applied to assess

excess co-transmissions of marker variants with

monogenic disease in families with multiple affected

members. Recent applications of WES significantly

speed up this process of Mendelian disease-casual

genes identification [61, 72]. Exome sequencing-

based linkage studies are usually carried out on af-

fected and unaffected individuals from a family or

unrelated group. Recent target enrichment solutions

of WES, such as ‘All Exon Kits’ provided by Agilent,

capture almost all protein-coding regions as well as

the nearby regulatory loci [73]. After the sequencing

step, the read fragments will first be mapped to ref-

erence genome, and the sequence variants will be

called at specific positions according to a series of

quality controls and recalibrations [74–77].

Bioinformatics tools have been developed to

reduce the biases and errors in the genome mapping

and variant calling [78]. Given large amount of called

sequence variants, filtration and prioritization are

usually conducted to select putatively disease-causal

mutations for further replication and validation [79].

Because Mendelian genetic disorders have varied

penetrance and complicated inheritance, it entails

different analysis strategies to isolate the causal mu-

tations efficiently from neutral sequence variants

[80]. For example, given a trio in which there are

two unaffected parents and an affected son, at least

four strategies can be used: candidate linkage regions

strategy [performing identical by descent (IBD) scan],

runs of homozygosity strategy (when consanguin-

eous mating happens, searching long range of

continuous homozygous genotypes in patients),

double-hit gene strategy [hitting deleterious allele

for homozygous genotypes (one from maternal and

other from paternal)], and de novo-mutation strategy

(searching for de novo-mutation only existing in child

but not in parents). If no other sample and disease

information are available, researchers have to try each

aforementioned strategy one by one and then rely on

their expertize to select several most likely causal

variants into the final prioritization list for follow-

up validation.

Although WES can efficiently map disease-causal

variants/genes at genome-wide level, it only targets a

small fraction (�1%) of the entire genome.

Meanwhile, the efforts are mainly focus on two

types of variants for further validation: nsSNVs that

disrupt protein-coding sequences and variants that

affect the transcript splicing. However, studies on

variations in noncoding regions (here refer to RVs)

that could be highly deleterious in monogenic dis-

ease development are significantly hampered by the
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limited genomic coverage of WES. It is notable that

synonymous or nonsynonymous changes in the pro-

tein-coding regions have been reported to hold an-

other hidden role in gene regulation. It was reported

that �14% of the codons within 86.9% of human

genes are occupied by the binding events of tran-

scription factors (TFs) in 81 diverse cell types. The

concept of ‘duons’ has been proposed for genetic

variants located in the exon regions, which play

both protein coding and regulatory roles [81, 82].

In this capacity, there are great possibilities to identify

RVs that affect TF binding and other regulatory in-

cidents in exonic regions. On the other hand, WGS,

with its constant decreasing cost, provides unprece-

dented chance to genome-wide screen causal RV of

Mendelian disease in typical pedigrees using linkage-

based method, which promotes the full understand-

ing of biological mechanisms of inherited disorders

[83, 84]. The method of whole-genome mapping of

RVs is consistent with that of WES, but there are no

universal criteria for RV prioritization, which will be

discussed later. A recent study discovered six different

recessive mutations in a previously uncharacterized

enhancer region located 25 kb downstream of

PTF1A by integrating combined WGS, linkage ana-

lysis and epigenomic profiling data [85]. The muta-

tions affect the binding of transcription factors

FOXA2 and PDX1, and increase the susceptibility

of isolated pancreatic agenesis. In this study, re-

searchers used runs of homozygous strategy to

search causal variants over long runs of homozygosity

regions on six affected subjects and one unaffected

subject from three unrelated consanguineous

families. Another study used WGS to exploit the

casual factors among amyotrophic lateral sclerosis

pedigree. Researchers adopted linkage-based strategy

to fine-map shared haplotype in a two-generation

pedigree and discovered a non-coding pathogenic

hexanucleotide repeat expansion that contributes

the disease susceptibility [86].

Mapping quantitative trait locus
Quantitative traits, such gene expression, DNA

methylation and histone modification, are thought

to be largely heritable during the evolution of species

[87]. Most of quantitative trait locus (QTLs) only

account for a small fraction of the total genetic vari-

ations in the population, exert relatively small effect

size and jointly contribute to a complex trait [88].

Understanding the correlation between genetic vari-

ations of DNA sequence and the phenotypic changes

of the quantitative traits is not only important for the

identification of disease molecular mechanism, but

also for the functional interpretation of the genetic

variants, which is hard to detect by conventional

genetic mapping, especially for rSNP that locates

outside of protein-coding regions. Many QTLs map-

ping studies have unveiled new susceptible loci and

provided significant insights into the human genetics

and medicine, and the method becomes an import-

ant complement of linkage analysis and association

study [89, 90]. The power to map QTLs is deter-

mined by their genetic effects, the allele frequencies

and the pattern of LD. Large numbers of individual

and genetic markers per individual are required to

locate the true effect site [88]. Original QTL map-

ping first defines a series of genomic markers co-seg-

regate with a QTL and then generates recombinant

inbred lines from two parents who differ in a trait.

Significant relationship between each marker and

investigated trait, includes single-marker mapping

[91], interval mapping [92], composite interval map-

ping [93, 94] and multiple trait mapping [95], can be

determined by different statistics tests such as t-test,

ANOVA or regression analysis. However, the itera-

tive mappings need be further performed to identify

the high-resolution region containing the QTL [96].

Recent advances on large-scale genotyping and

sequencing of human genome have enabled us effi-

ciently to map high-resolution QTLs using SNP

markers. The International HapMap Consortium

made great efforts to catalog all common genetic

variation across different ethnic groups (at least 5%

MAF) [47, 97]. Also, the 1000 Genomes Project

aimed to sequence 2500 individuals and identify

rare variants with a MAF of <1% [1]. These popu-

lation genetics data provide a foundation for map-

ping the exact locus underlies quantitative traits in

human. On the other hand, high-throughput micro-

array and NGS-coupled profiling have produced a

large number of genomic, epigenomic and transcrip-

tomic data, which drive the evolution of QTL map-

ping methodology and provide great opportunities

to dissect the genetic variations of complex pheno-

types. To date, several human quantitative traits,

including gene expression, protein expression, non-

coding RNA expression, alternative splicing,

chromatin accessibility, DNA methylation, histone

modification and translational efficiency, have been

used to measure their genetic associations under dif-

ferent cell types/tissues, and most of these genetic

associations are controlled by the rSNPs that exert
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allele-specific function in highly dynamic chromatin

states and transcriptional activities (Figure 2).

Compared with standard QTL mapping (Figure

2b) in which the genotype of target SNPs are treated

as the independent variable, the haplotype-based

QTL mapping (Figure 2a) are recently used to pin-

point the allele-specific transcriptional activities of

target SNP [98].

Gene transcript eQTLs
eQTL mapping is one of the most prominent direc-

tions in the studies of quantitative traits and has been

extensively applied to unravel the genetic variants

that explain the variation in gene expression levels.

Typical eQTL mapping requires both genetic

(genotyping or sequencing per individual) and gene

expression data (microarray or RNA-Seq per indi-

vidual). These methods measure direct association

between genetic variants and gene expression levels

in a cohort of individuals (tens or hundreds) from the

same population. Recent works have successfully

revealed large number of genome-wide eQTLs for

different ancestry [99] or different tissues/cell types

[100], and those results highlight the highly dynamic

gene regulation in condition-specific manner and

provide a comprehensive view of linking the

rSNPs to their direct gene targets. Furthermore,

similar experiments have been carried out on the

expression of lincRNAs across different tissues to

study the association between genetic variants and

Figure 2: Mapping the QTL according to different genomic and epigenomic signals. (A) QTLs mapping that correl-
ates allelic effect to different molecular phenotypes of transcriptional gene regulation including histone modification,
DNA methylation, TF binding and gene expression. Molecular phenotypes express allele-specific expression pattern
and require haplotype-based QTL mapping other than (B) standard QTL using only genotype and overall expression.
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lincRNA abundances [19]. However, questions are

raised on the exact molecular mechanisms of those

associated loci, in which the regulatory variants have

been characterized as either cis or trans acting,

demonstrating the functional complexities in terms

of physical distance with their target genes [101].

Although one can immediately estimate that eQTL

may affect the activity of cis-regulatory element

(CRE), such as promoter and distant enhancer,

which directly control the expression of neighboring

gene [102], or function to influence upstream regu-

lators of target gene in an indirect way, such as TF

and their target genes [103], miRNAs and their

target genes [90, 104], it is still difficult to connect

them to underlying phenotypes, especially for

human disease. Researchers have used GWAS results

to show that TASs are more likely to be eQTL [105]

and to predict gene/SNP-disease associations by

matching patterns of expression data [106, 107],

but interpreting the functional relationship between

those rSNPs and disease development yet requires

in-depth investigation from regulatory perspective.

DNase I sensitivity quantitative trait loci
To identify the causal regulatory variants and further

exploit the regulatory mechanisms of how eQTLs

affect gene expression, DNase I sequencing has

been used to measure chromatin accessibility in

matched samples (such as Yoruba lymphoblastoid

cell lines). Many DNase I sensitivity quantitative

trait loci (dsQTLs) have been successfully inferred

by correlating the DNase I sensitivity level with in-

dividual genotype, indicating that allele constituent

of rSNPs can cause different levels of transcription

factor binding or nucleosome occupancy at regula-

tory loci [108]. Joint dsQTL–eQTLs analysis also

demonstrated that dsQTLs are dominant factors in

affecting gene expression levels and most of eQTLs

are also dsQTLs [108]. Therefore, rSNP affecting

chromatin accessibility may be a major mechanism

linking to associated changes in gene regulation and,

ultimately, individual phenotype.

Histone modification quantitative trait loci
Recent genomic studies elucidated some specific

post-translational modifications of histone (like

H3K4me1, H3K4me2, H3K4me3, H3K27ac and

H3K27me3) and TFs (like EP300, CTCF and cohe-

sin) are associated with active or repressive chromatin

states and could be regarded as the chromatin marks

of CREs [109]. Followed by gene expression and

DNase I hypersensitivity traits, researchers recently

used multiple histone marks and specific TF-binding

profiles to investigate whether the chromatin vari-

ability are genetically inheritable in a relatively small

cohort from the same human population or in trios

[110, 111]. Those works uncovered that large

number of abundant allelic specificities is correlated

with concordant trend of TF binding, histone modi-

fications and transcription operation [112]. Several

histone modification quantitative trait loci

(hmQTLs) and TF-binding QTLs were successfully

identified at both population and family levels,

which indicates that the variances of critical molecu-

lar traits shape the phenotypic differences between

individuals and ethnic groups through genetic oper-

ation [113, 114]. On another layer, the mapping of

hmQTLs will also greatly facilitate the identification

of regulatory variants affecting functional chromatin

states.

Methylation quantitative trait loci
DNA methylation is a fundamental epigenetic mark

that controls the switch of gene expression [115].

Nevertheless, the dependency of genomic sequence

for DNA methylation level as well as the lineage

specificity is largely unknown [116]. Same as with

other QTL mapping methods, researchers correlated

genome-wide DNA methylation profiles with indi-

vidual genotypes on human cohorts to identify loci

that affect DNA methylation. A lot of genetic loci

were discovered that can explain differentially

methylated CpG sites in population specific or cell

type specific manner, although not all variations of

DNA methylation can be interpreted according to

genetic factors [117–120]. Therefore, the dynamic

DNA methylation profile as well as their causal re-

lationship with gene expression will be an essential

part on studying the functional role of regulatory

variants.

Splicing quantitative trait loci
Alternative splicing can produce different mature

mRNA isoforms from same gene and more than

90% of human genes are alternatively spliced [121,

122]. Recent RNA-seq technology has provided ef-

fective solution to quantitatively measure the exon

expression levels and canonical/novel splicing events

[123]. It also enables us to look at the correlation

between genetic variants and exon expression level

on single nucleotide level. To this end, several

studies applied linear regression models to detect spli-

cing quantitative trait loci (sQTLs) in population cell

lines [10, 11, 124]. Functional interpretation of
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sQTLs will be a daunting task because of the com-

plexity of splicing. Genetic variants may affect differ-

ent splicing events, such as exon skipping, 30 or 50

alternative splice junction and intron retention. It has

been uncovered that alternative splicing can also be

modulated by the variation of RNA secondary struc-

ture [14].

Other QTLs, such as ribosomal associated gene

transcript expression quantitative trait loci [23] and

protein expression quantitative trait loci [125], were

investigated recently and have been shown to ex-

plain many quantitative traits even under the circum-

stances of inadequate sample size. Those important

QTLs function in posttranscriptional and transla-

tional level can also directly contribute to diversified

phenotypes. Although QTL mapping can be an ef-

ficient solution to exploit the genetic loci that are

associated with quantitative traits, it is still difficult to

find out the true functional variants because of the

limitations of LD structure, sample size and genotyp-

ing volume in investigated population. Therefore,

fine mapping of regulatory variants from QTL stu-

dies need in-depth analysis and replication. In add-

ition, context dependency is also a determinant

when mapping regulatory QTL and rSNP in differ-

ent cell lineages.

Higher-order mapping
Aforementioned genetic mapping methods assume

that functional genetic variants contribute to a

phenotype independently and follow an additive

effect model. These methods inevitably miss the

chance to detect the collaborative effect in which

two or more variants work together. Many studies

have showed that the genetic landscape of a cell is

highly interactive and coherent between genes in

eukaryote [126, 127]. The epistasis and its implica-

tions in human diseases are also well discussed and

have been proposed to solve the problem of missing

heritability in lots of association studies [128–131]. In

this regard, researchers have developed many statis-

tical and experimental methods for higher-order

genetic mapping [132].

Three major strategies can be used to search the

genome-wide epistasis effect, including main and

interaction effects, using genotype data within cases

and controls [133, 134]. The exhaustive strategy it-

eratively enumerates all possible interactions among

SNPs, and then evaluates the statistical significance

under an assumed distribution. It is extremely com-

putational demanding when applying this method to

a whole GWAS data set even for many optimized

algorithms [135, 136]. The second strategy selects the

valid SNPs combination randomly in the candidate

space and tests them in a well-trained model. But this

strategy may introduce biases such as sampling error

and model over-fitting [137, 138]. Third, heuristic

strategy searches for the valid combination under the

given conditions according to prior knowledge and

defined rule [139, 140]. Apart from the SNP-SNP

interaction, the interactions between genetic variants

and environment factors can be used to understand

the genetic basis of disease development beyond her-

itability [141, 142]. However, the power and true

discoveries of association testing for multi-SNP and

SNP-environment interaction are largely restricted

by the allele frequency, the significance level,

sample size, the number of typed SNPs and disease

penetrance, which raise challenges in statistical cor-

rections of multiple testing. Importantly, rSNPs that

take up large proportion of interactions could inter-

pret many variable transcriptional activities by their

cis-acting loci and eQTLs [143, 144].

Perspectives on genetic mapping of
regulatory variants
Fine mapping of RVs are more difficult than map-

ping the protein-coding variants. First, the search

space is larger because we have to search significant

signals across whole genome, which is �30–50 times

larger than the protein-coding regions. More com-

puting resources are needed in phasing, imputation

and association testing. For mapping RVs using

family-based WGS on rare disease, it still requires

large efforts in searching linked regions and filtering

unqualified variants. Secondly, the possible biological

functions of RVs can be complex and involve many

processes of transcriptional gene regulation (see next

section). Therefore, unlike nsSNVs that directly

change the protein function, it is difficult to pinpoint

the molecular mechanism of RVs only from geno-

type information alone. Fortunately, the recent

advent of high-throughput NGS-coupled technolo-

gies enables us to measure genomic, epigenomic and

transcriptomic traits, such as transcript expression, TF

binding, chromatin accessibility, histone modifica-

tion and DNA methylation. This genome wide

data significantly facilitate the interpretation of

RVs’ effects on those phenotypes by methods such

as eQTL, dsQTL and hmQTL. In summary, fine-

mapping of RVs and estimation of their functional

roles in gene regulation are complicated but feasible.
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GWAS, linkage analysis and QTL are complemen-

tary solutions that collaboratively provide means to

decipher the effect of genetic variants and the eti-

ology of human diseases/traits.

Function prediction and prioritization of
regulatory variants
Genetic mapping from either population level or

family-based study cannot always capture the true

causal variants. For most of GWAS and QTL ana-

lysis, identifying the causal variant from a GWAS

SNP is hard unless we perform expensive and

time-consuming experiments. The linkage analysis

also has limited resolution in detecting the patho-

genic mutations from large linkage peaks for most

of genetic inheritance patterns. Even if the result of

fine mapping can be acquired by statistical step, the

critical issue is how to accurately elucidate the bio-

logical mechanism these variants act. Sophisticated

algorithms for prioritizing nsSNVs have been de-

veloped, as the variants can directly alter protein

function and many relevant information are available

to facilitate rightly deleterious estimation, including

phylogenesis, amino acid physicochemical properties

and conformation information. Recent efforts fur-

ther improved the performance of nsSNV patho-

genic prioritization by combined prediction model

with more functional scores of existed tools [145–

147]. However, for the RVs that have elusive

functions in transcriptional gene regulation, the

functional interpretation will be largely complicated.

Gene transcription is governed by many spatial

and temporal factors such as global or local chroma-

tin states, nucleosome positioning, TF binding, and

enhancer/promoter activities. RVs altering any one

of these processes may change the gene regulation

and result in the phenotypic abnormality. The influ-

encing effect size of RVs can be very diverse in terms

of the variant properties. An rSNP may only change

the motif sequence of the cis-acting regulatory elem-

ent and consequently affects the transcription regu-

lation performance. In contrast, a deletion or

insertion of DNA sequence may completely deplete

the motif that a specific regulator binds. Also, the

copy number changes of DNA fragments could

result in big chromosome conformation change

and abnormal transcriptional level. Many continuous

genomic loci that can recruit the binding of core TFs

and function as super enhancers have been identified

[148, 149]. Genetic variants, especially Indels and

CNVs, in functional chromatin stretches will have

a great chance to impact the processing of condi-

tion-dependent gene transcription [34]. We outlined

the biological mechanisms of RVs influencing tran-

scriptional gene regulation in Table 1. Although the

molecular mechanisms of RVs are elusive, current

genomic studies have found many genuine RVs in

human genome according to specific genetic and

epigenetic features. Here, we highlight some preva-

lent and new emerging computational methods for

detecting and prioritizing RVs.

Transcriptional regulator activity
profiling
Early studies have revealed a batch of TF-binding

motifs using systematic evolution of ligands by ex-

ponential enrichment or other high-throughput

motif enrichment methods, which are generally rep-

resented by position weight matrices (PWMs).

Computationally, by applying motif scanning for

these PWMs stored in public database including

TRANSFAC [171], JASPAR [172] and

UniPROBE [173], one could easily judge the puta-

tive DNA-binding affinity for each TF given a DNA

sequence [174]. As TFBSs are short (usually 6–20 bp)

and degenerate, mutations in there are more likely to

impact binding-affinity changes [175]. Many diseases

and traits can be attributed to the allele-specific TF

binding, and most of these binding alterations are

caused by sequence variations in the DNA functional

elements including promoters, enhancers, silencers

and insulators [176, 177]. It is straightforward to

quantitatively measure the difference of binding affi-

nities (gain or loss) between alleles by calculating the

log-odds of binding probabilities for each motif-

given paired DNA sequences contain SNP.

Researchers have developed various bioinformatics

tools with the modifications to estimate the variants

effect and prioritize the rSNPs based on binding af-

finity changes (Table 2).

Chromatin immunoprecipitation followed by

sequencing (ChIP-seq) is an effective method to ana-

lyze protein’s interaction with DNA, and has been

frequently used to investigate the genome-wide

binding pattern of a specific TF. The Encyclopedia

of DNA Elements (ENCODE) project has per-

formed more than 500 ChIP-seq experiments of

hundreds TFs across a number of human cell lines

[26, 189]. Those data provide unprecedented re-

sources to study the TFs dynamic activities consider-

ing the specificity of TF binding in different cell

types. Therefore, to facilitate the identification of
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Table 2: Current function prediction and prioritization tools for detecting regulatory variants in transcriptional
gene regulation

Theoretical basis Name Type Available information Functions

TF-binding affinity is-rSNP [178] Web server TF motifs Scoring two alleles with aTF PWM
TRAP [179] Web server TF motifs Calculate binding affinity change of

two alleles by PWM scanning
Chromatin states HaploReg [42] Database Chromatin state, DNase, TF binding, TF

motif, eQTL, Conservation
Data integration, combined GWAS
and LD

RegulomeDB [41] Database Histone modifications, DHSs, TF binding, TF
motif, Conservation

Data integration, category scoring

GWAS3D [43] Web server Histone modifications, DHSs, TF binding, TF
motif, chromosome conformation, con-
servation, combined P-value

Data integration, real-time calcula-
tion, combined GWAS and LD,
statistical test, large-scale
annotations

ChroMoS [180] Web server Predicted chromatin state, TF motif Data integration, scoring two alleles
withTF PWM

rSNPBase [181] Database Histone modifications, TF binding, eQTL,
distal interaction

Data integration, LD information

Evolution VAAST [182] Software Phylogenetic conservation, Amino acid
substitution

Unified likelihood model

GERPþþ [183] Database Rejected substitutions, Neutral rate, Base-
wise score

Probability model based on evolu-
tionary tree

PhyloP [184] Software Base-wise conservation scores and P-value Probability based on an alignment
and a model of neutral evolution

dbPSHP [185] Database Positive selection scores Comprehensive data integration
from population genetic, positive
selection models

Combined GWASrap [56] Web server Combining functional prediction scores
from transcription to translation

Data integration, large-scale anno-
tations, additive model

FunSeq [186] Software Histone modifications, DHSs, TF binding, TF
motif, distal regulatory module, conser-
vation, functional score

Data integration, large-scale anno-
tations, cancer and personal
genomes

CADD [187] Software 88 annotations for genomic and epigenomic
data, C-score

Data integration, large-scale anno-
tations, machine learning method

GWAVA [188] Software Histone modifications, TF binding, DHSs,
RNA polymerase binding, conservation

Data integration, large-scale anno-
tations, machine learning method

Table 1: Mechanisms of regulatory variants influencing transcriptional gene regulation

Known processes Molecular mechanisms

Affecting promoter activity Mutations disrupt or promote the transcription initiation and the assembly of transcriptional
factory by directly affecting the binding of critical activators, repressors and other tran-
scriptional units [150^153].

Altering enhancer/silencer function Genetic variants located in enhancer/silencer region can affect the binding motif of transcrip-
tion factors, chromatin regulators and other distal transcriptional factors, which disturb the
interaction between enhancer/silencer and its target gene [154^156].

Altering insulator, other distal cis-
regulatory elements

The function of insulator could be abolished by genetic variants that disrupt the CTCF binding
[157, 158].

Influencing nucleosome positioning Mutations in specific DNA sequence can affect the packing efficiency of nucleosomes and the
transitions between euchromatin and heterochromatin [159^161].

Disrupting distal/proximal inter-
action between functional
elements

The genetic variants, include SNP and indel, can affect the normal chromatin structure and
result in improper chromosome interactions [162^164, 165].

Breaking global chromosome
structure

Large Indel and CNV can destroy the normal chromatin structure and result in improper
chromosome conformation [166].

Changing transcriptional dosage gene expression can be influenced by higher and lower gene dosages through insertions or de-
letions of duplicate gene or transcriptional unit into cell [167, 168].

Affecting noncoding RNA tethering The interaction between long noncoding RNA (such as Xist) and chromatin may be lost due to
a DNA mutation disrupt the RNA^DNA recognition [169, 170].
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RVs that actually function in specific condition,

we have to use cell type specific TF-binding site

data and filter the spurious binging events.

Fortunately, recent resources, including HaploReg

[42] and RegulomeDB [41], have collected massive

TF-binding events from ENCODE and public data

sets to annotate the putative RVs and mapped the

TASs to those signals, which significantly narrow

down the RVs identification (Table 2).

Although direct TF-binding affinity scanning

coupled with experimental data is a valid method

to search functional rSNP candidates, the searching

space can be extremely large when applying all

known motifs even if incorporating ChIP-seq data

for regional filtering. This situation can be relieved if

both genetic mapping and TF-binding experiment

are conducted beforehand, or limit the search only

on several relevant TFs [190, 191]. In addition, mul-

tiple testing control and permutation are usually

needed to fetch the statistically significant hits

[192], which further aggravate the computational in-

tensity. Importantly, current power of rSNP predi-

cation by TF-binding affinity scanning is still low

because of the limited number of discovered motifs

and TF-binding assays.

Chromatin state measurement
Many studies showed that specific chromatin

states are inheritable following DNA replication

in eukaryotes ranging from yeast to mammals

[193–195]. However, how the genetic factors, such

as SNP, Indel and CNV, connect to distinct chro-

matin structure and result in the spatiotemporal pat-

terns of gene regulation is largely unknown. It was

well established that chromatin states including his-

tone modifications and DNA methylation underlie

specific functional elements and represent regulatory

processes other than TF regulation [115, 196]. Some

chromatin marks are frequently used to pinpoint the

distinct functional elements (like enhancer/insulator/

promoter) in different cell types, which indicate

active or repressive transcription events of euchroma-

tin. In addition, active chromatin captured by DHSs

sequencing usually exposes the DNA and produces

accessible chromatin zones that are functionally

related to transcriptional activity. Therefore, re-

searchers began to incorporate chromatin marks for

rSNP prediction. Same as with the TF-binding pro-

filing, one can easily locate the putatively regulatory

variants by mapping profiles of different chromatin

marks (such as H3K4me1, H3K27ac, EP300, DHS

for enhancers) and then filter the variants accord-

ing to the marks occupancy. HaploReg [42],

RegulomeDB [41], GWASrap [56] and rSNPBase

[181] have collected and curated large number of

cell type specific chromatin data for each SNP site

in latest dbSNP and 1000 Genomes Project. Those

data significantly scale down the searching space and

facilitate rSNP identification (Table 2).

On the other hand, the spatial organization of

chromosomes is not random and is pivotal to the

spatiotemporal regulation of gene expression, DNA

replication and repair and recombination.

Chromosome conformation capture (3C) as a new

emerging technology is used to analyze the organ-

ization of chromosomes of cell’s natural state. The

derivatives of 3C, such as Circularized Chromosome

Conformation Capture (4C), Carbon-Copy

Chromosome Conformation Capture (5C), Hi-C,

ChIP-loop and Chromatin Interaction Analysis by

Paired-End Tag Sequencing (ChIA-PET), greatly

improve the power of 3C and aid the genetic and

epigenetic studies of chromosomes [197]. It was

reported that structure variations can disrupt the

chromosome conformation by altering interaction

of chromosome fragments [166, 198, 199]. Apart

from overall chromosome structure, promoters and

distal functional elements frequently act in looping

interactions that have been implicated in transcrip-

tional gene regulation, and many studies have shown

that long-range interactions enhance or inhibit gene

expression directly [200–202]. With the improve-

ment of sensitivity of high-throughput conformation

capture including high resolution Hi-C (up to 10 kb)

and ChIA-PET (narrow peaks) in cell population or

single cell level [203–205], we can investigate the

genome-wide DNA interaction profile and their as-

sociation to SNP function [206, 207]. Recent study

used 3C- and 4C-Seq methods to show that obesity-

associated variants within the FTO gene can affect

another gene IRX3’s expression, at megabase dis-

tances, by long-range interaction with the IRX3 pro-

moter [208], which is a perfect example to

demonstrate the practicability and validity of

chromosome conformation capture assay in identify-

ing casual regulatory variants and target gene. Also, it

highlights that the long-range interaction genomic

data can be used to prioritize the functional regula-

tory variants in relevant cell type. In GWAS3D [43],

researchers combined multiple domains data, espe-

cially distal interaction data, to annotate and predict

the rSNP in its risk haplotype and in 3D chromatin
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structure, which greatly increase the sensitivity and

specificity of rSNP identification.

To quantitatively evaluate and prioritize func-

tional consequence of rSNPs correlated with differ-

ent chromatin signals, one direct measurement is to

calculate the underlying TF-binding affinity changes

between different alleles using aforementioned

motif-scanning method. Both GWAS3D [43] and

ChroMoS [180] adopted this manner in the final

prioritization step (Table 2). Recent works have col-

lected a large set of ENCODE TF motifs by incor-

porating different enrichment methods [209] and by

integrating multilevel regulators [210], and those data

further extend the TFs-binding library. However,

the causal relationship between the TF binding and

dynamic epigenomic modification is still a debatable

question. hmQTLs and methylation quantitative trait

loci studies have uncovered a batch of genetic loci

that correlated with the changes of histone modifi-

cations or DNA methylation by specific TF binding

[113, 114, 120]. Genetic variants that alter the TF

binding within CRE may lead to heterogeneity and

asymmetry of chromatin states between individuals

or cells [211]. But whether and how the regulatory

genetic variants change and form those differences of

epigenomic modification are still open questions.

Recently, several methods and tools were devised

to systematically combine large-scale genomic and

epigenomic data for noncoding variants prioritization

[186–188] (Table 2).

Evolutionary methods
Comparative genomics approaches for RVs predic-

tion assume that the DNA sequence harbor the RV

locus remain conserved across different species at an

extensive phylogenetic distance. Differing from pro-

tein-coding variants, it is usually required that RV

locate in the range of 20–200 bp DNA sequence

under purifying selection, such as conservative en-

hancer and promoter [212]. These conserved sec-

tions are interpreted as regulatory function units in

which substitutions were rejected during natural se-

lection and species evolution [213, 214]. Many gen-

etic studies use evolutionarily conserved score, like

phastCons and 28-way vertebrate alignment, as the

putative benchmark for genomic regions that may

have biological importance, even if the functional

annotation of these regions is unknown [215–217].

To distinguish exact evolutionary signature for SNP

site, base-wise scores for rejected substitutions are

adopted including GERPþþ and PhyloP [183,

184]. Those information help researchers to effi-

ciently predict and prioritize the putative casual vari-

ants, especially for the RVs in the intergenic regions

with inadequate functional annotations (Table 2).

However, comparative genomics approaches can

only discover limited number of RVs in the whole

genome, and it will miss many non-conserved re-

gions that RVs locate [218]. Only a small subset of

CREs is likely to be discovered by rigorous evolu-

tionary constraints like high conservation across all

species in mammals [219]. In this regard, the statis-

tical power will be low for genome-wide RVs dis-

covery according to the different level conservation

information. Recent study has found that GATA1

binds site for an enhancer of GHP68 only in a spe-

cies-specific manner, indicating that orthologous hit-

ting will be invalid [220]. Also, lineage-specific

elements that evolve in the recent time, as well as

loci under adaptive selection, could also be important

targets when mapping and prioritizing RVs from

evolutionary perspective [221, 185] (Table 2).

Directions and strategies on
prioritization of regulatory variants
Functional annotation, prediction and prioritization

are crucial in the downstream analysis to identify

causal variants. Accurately estimating the function

effect and ranking the most pathogenic variants are

still challenging. Many factors can influence the sen-

sitivity and specificity of true causal RVs prioritiza-

tion. First of all, the temporal and spatial biological

process will affect RVs to exert their function among

different tissues/cell types [222]. The transcriptional

signals, such as gene expression, histone modification

and chromatin state, have been shown to express

distinct pattern around the eQTL and GWAS loci

in different tissues/cell types [33, 223]. Those dy-

namic regulation patterns stress the importance of

tissues/cell type specificity when predicting the func-

tion of RVs. Second, the lack of sufficient genomic

data in multiple dimensions (TF-binding profiles,

epigenomic signals and chromatin states) limit the

method’s usage in some tissues/cell types. For ex-

ample, there are more genomic data generated for

ENCODE tier 1 cell lines (GM12878, K562, H1

human embryonic stem cells) than other cell lines,

which limit the power to detect causal RVs in less

studied cell types. In addition, the population differ-

ence could be a reason that result in the difficulty of

identification genetic causalities for population spe-

cific diseases/traits. The risk allele of a disease-causal
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variant in one population may not produce func-

tional effect in another population because of haplo-

type structure, epistasis and other environment

factors. Therefore, the population specificity should

be incorporated in the practice of personalized vari-

ants prioritization in the future. Lastly, although

there are many methods and bioinformatics tools

(Table 2) available to predict and prioritize the dele-

teriousness and pathogenicity of RVs, they rely on

varied annotations and adopted distinct statistical

methods, which will significantly affect the predic-

tion performance in terms of consistence, sensitivity

and specificity. Considering the functional complex-

ity of RVs in gene regulation, combinatorial integra-

tion of results generated from a variety of

computational methods could be a better strategy.

Functional validation of regulatory
variants
We can use existing genomic features as well as bio-

informatics methods to prioritize the most probably

damaging variants that affect gene transcriptional

regulation for the investigated traits and to predict

the functional mechanism of these RVs. However,

selected candidates still could be a false positive hit, as

the predictive power and condition-dependent gene

regulation can be distinct in terms of different traits,

individuals and cell types/tissues. The experimental

function validation is needed to interrogate the true

effect of RVs according to several rigorous study

designs. Evolving techniques have enabled re-

searchers to perform functional experiments to

decide the effects of RVs in various ways.

To initially check the TF-binding affinity between

different alleles, experiments like electrophoretic

mobility shift assay and construct transfection fol-

lowed by luciferase expression are frequently used

to validate function of promoter, enhancer or other

CREs invitro [150–153]. Recently, in continued suc-

cession of GWAS, researcher have successfully re-

vealed a common non-coding SNP (rs12740374)

at the 1p13 locus that functions as an enhancer to

create a C/EBP (CCAAT/enhancer binding protein)

binding site and alter the hepatic expression of the

SORT1 gene, which finally affects plasma LDL-C

and very low-density lipoprotein particle levels

[154]. Also, similar enhancer reporter assay showed

that a transcriptional enhancer element in which the

G allele of a casual variant rs554219 reduces the

cyclin D1 protein levels and increases the risk of

breast cancer by abolishing the binding of ELK4

TF [155]. Chromatin immunoprecipitation coupled

with real-time polymerase chain reaction (ChIP-

qPCR), ChIP-chip, as well as ChIP-seq assays are

effective strategies to quantitatively measure the

DNA-protein binding interactions from one to mul-

tiple genomic loci for a specific TF. These tech-

niques have been used to map the binding

difference between cells with different genetic back-

ground [156, 162, 224]. On the other hand, to dir-

ectly verify the SNP effect on three dimensions, such

as enhancer-promoter interaction, 3C and fluores-

cence in situ hybridization-related methods are

broadly used as the supplementary experiment after

conventional TF-binding assay [162, 163].

However, the true effect size of RV may vary

between cultured cell lines and in vivo system, and

this requires in-depth investigation on isogenic sys-

tems and animal models. Transgenic assay is able to

construct a paired reporter genes with wild and

mutated functional CREs linked in front of a low-

activity promoter. Then an enzyme assays (stain for

b-galactosidase) after cell transfection (usually inject

into fertilized mouse egg or fly embryo) gives quan-

titative estimation of the CRE activities, and the dif-

ference of transcriptional activities explains the

regulatory effects of RV [163, 225]. With the exten-

sive application of genomic editing systems, includ-

ing zinc finger nucleases, transcription-activator-like

effector nucleases and clustered regularly interspaced

short palindromic repeats (CRISPR/Cas), in vivo
functional validation of RV according to powerful

gene editing technologies will greatly speed up

the understanding of trait-associated genetic variants

in real gene transcription [226–228]. Finally, we can

indirectly test the causal relationship between

RV and its functional products in vivo in human

samples, by correlating the genotype with actual

target gene/protein expression on effective samples

[156].

CONCLUSIONS
Complete identification of function relevant RV and

its trait association require extensive investigations

from upstream genetic mapping to downstream

functional analysis and validation. Outcomes from

GWAS, QTL and WES are continuously expanding

the catalog of candidate RVs and greatly narrow

down the searching space of truly functional loci in

the risk haplotypes. The versatile consortia of gen-

omic data by ENCODE, Roadmap Epigenomics
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and GTEx projects significantly facilitate the anno-

tating, interpreting and prioritizing RVs and its effect

across different cell types and tissues. Up to now,

only a small fraction of RVs and its exact function

were successfully characterized, and most of func-

tional explanations of RVs linking to human diseases

almost focused on the change of TF-binding affinity

and enhancer/promoter activity. However, the

functional consequence of RVs acting on transcrip-

tional gene regulation could be complex and relate

to high-order chromatin state and epigenetic regula-

tory programs. Although several models and assump-

tions tried to understand molecular mechanisms of

RVs, there is lack of valid, high-throughput and

cost-efficient biotechnologies. Future works should

extensively focus on RV functional validation from

multiple perspectives.

Key Points

� Interpreting the functional role of genetic variants located in
human genome regulatory regions, such as enhancers and pro-
moters, is an indispensable step to understandmolecular mech-
anism of human diseases/traits and evolution.

� Whole-genome association test, linkage analysis and quantita-
tive trait locus mapping are three importantmethods to detect
causal regulatory variants.

� Many human quantitative traits, including gene expression, pro-
tein expression, non-coding RNA expression, alternative spli-
cing, chromatin accessibility, DNA methylation, histone
modification and translational efficiency, can used to measure
genotype^phenotype associations at cell type/tissue specific
level.

� Data from large-scale genomic projects, such as ENCODE,
Roadmap Epigenomics and GETx projects, will significantly pro-
mote functional annotation, prediction and prioritization of
regulatory variants.
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