
GWAS3D: detecting human regulatory variants by
integrative analysis of genome-wide associations,
chromosome interactions and histone modifications
Mulin Jun Li1,2, Lily Yan Wang1,2, Zhengyuan Xia2,3, Pak Chung Sham2,4,5,6 and

Junwen Wang1,2,4,*

1Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China,
2Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, Guangdong 518057,
China, 3Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
SAR, China, 4Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong
Kong SAR, China, 5Department of Psychiatry LKS Faculty of Medicine, The University of Hong Kong, Hong
Kong SAR, China and 6State Key Laboratory in Cognitive and Brain Sciences, The University of Hong Kong,
Hong Kong SAR, China

Received February 14, 2013; Revised April 15, 2013; Accepted May 6, 2013

ABSTRACT

Interpreting the genetic variants located in the
regulatory regions, such as enhancers and
promoters, is an indispensable step to understand
molecular mechanism of complex traits. Recent
studies show that genetic variants detected by
genome-wide association study (GWAS) are signifi-
cantly enriched in the regulatory regions. Therefore,
detecting, annotating and prioritizing of genetic
variants affecting gene regulation are critical to our
understanding of genotype–phenotype relation-
ships. Here, we developed a web server GWAS3D
to systematically analyze the genetic variants that
could affect regulatory elements, by integrating
annotations from cell type-specific chromatin
states, epigenetic modifications, sequence motifs
and cross-species conservation. The regulatory
elements are inferred from the genome-wide
chromosome interaction data, chromatin marks in
16 different cell types and 73 regulatory factors
motifs from the Encyclopedia of DNA Element
project. Furthermore, we used these function
elements, as well as risk haplotype, binding affinity,
conservation and P-values reported from the original
GWAS to reprioritize the genetic variants. Using
studies from low-density lipoprotein cholesterol,
we demonstrated that our reprioritizing approach
was effective and cell type specific. In conclusion,
GWAS3D provides a comprehensive annotation and
visualization tool to help users interpreting their

results. The web server is freely available at http://
jjwanglab.org/gwas3d.

INTRODUCTION

Recent studies on human genetics, such as The
International HapMap Project (1) and 1000 Genomes
Project (2), have identified a large number of genetics
variants in the human genome. Furthermore, genome-
wide association studies (GWAS) (3) and exome
sequencing (4,5) are extensively used to globally investi-
gate the relationship between genetic variants and human
diseases/traits. By looking at the genomic location of the
associated variants detected in GWAS, a large portion
(�88%) of them fall outside of coding regions, which
are harder to interpret than the protein-coding variants
(6). Therefore, elucidating the molecular function of
genetic variants locating in the non-coding regions is
critical to our full understanding of genetic disorders.

However, there are many difficulties and computational
challenges in achieving this goal (7). One of the major
difficulties comes from the unclear role of non-coding
genetic variants in the relevant processes underlying
disease/trait association. These variants could affect
many biological activities including transcription,
splicing, post-transcriptional regulation, translation initi-
ation/elongation and post-translational modification (8).
Previously, conservation information was frequently
used to prioritize the functional importance of non-
coding genetic variation (9,10). At the transcription regu-
lation level, mutations in the promoter regions may
impact the recruitment of RNA polymerase and other
regulators, especially the binding of transcriptional
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factors (TFs) to the promoter region to initiate gene tran-
scription. Tools such as is-rSNP (11), sTRAP (12) and
regSNPs (13) have been successfully developed to
evaluate the binding affinity affected by genetic variation.
However, although algorithms that solely used TF motifs
are effective in finding regulatory elements in the immedi-
ate promoter regions but may inevitably introduce a large
number of false positives in the distal promoter/enhancer
regions where the searching space becomes substantially
larger. More and more studies showed that mutations
within the distal regulatory elements, such as enhancer,
insulator and silencer, could also disrupt or change the
binding of TFs, nucleosome positioning signals and chro-
matin states. Furthermore, the locally changed chromo-
some conformation can block or create looping
interaction between distal elements and promoter regions
(14) and subsequently influence gene regulation.
Unfortunately, few tools or resources have used such in-
formation to study genetic variants.

The Encyclopedia of DNA Elements (ENCODE)
project has identified a comprehensive map of functional
elements and active chromatin marks by advanced tech-
niques such as ChIP-seq, DNase-seq, bisulfate sequencing,
chromosome conformation capture and so forth. (15,16).
Recent studies showed that disease-associated single-
nucleotide polymorphisms (SNPs) detected by GWAS
are significantly enriched in the regions that harbor func-
tional elements, such as transcriptional factor binding sites
(TFBSs), histone modification marked regions, DNase I
hypersensitive sites (DHSs) and expression quantitative
trait loci (16–19). Two recently published databases,
HaploReg (20) and RegulomeDB (21), have used these
regulatory signals and marks to annotate the genetic
variants, which offer comprehensive resources on regula-
tory variation. On the other hand, different functional
elements have been reported to function in a tissue/cell
type-specific manner. SNPs associated with the same
trait are likely to locate in active chromatin marks in the
same/relevant cell type (22), implying the possibility of
detecting regulatory signals using the chromatin marks
of phenotypically relevant cell type. Computational algo-
rithms including ChromHMM (23) and Seaway (24) have
been successfully applied to scan different functional
elements in the genome. Therefore, combinatory analysis
of GWAS data and functional elements in a specific cell
type to capture regulatory variants for a particular
disease/trait are needed.

Here, we develop a web server GWAS3D (http://
jjwanglab.org/gwas3d) to systematically analyze the prob-
ability of genetic variants affecting regulatory pathways
and underlying disease/trait associations by integrating
chromatin state, functional genomics, sequence motifs
and cross-species conservation for a set of GWAS data
or variant list. We first collected and curated genome-
wide chromosome interaction (5C, Hi-C, ChIA-PET)
data, enhancer/insulator/promoter marks [H3K4me1,
H3K27ac, p300, CCCTC-binding factor (CTCF), DHS]
and ChromHMM predicted functional elements in 16 dif-
ferent cell types. Using those regulatory regions, we
mapped genetic variants to the reference genome and
evaluated the binding affinity changes of regulatory

factors by scanning 73 ENCODE motifs. Finally, we
combined original GWAS signal, risk haplotype, binding
affinity significance and conservation information to pri-
oritize the genetic variants. In addition, the system
provides comprehensive annotation and visualization to
help users to interpret the results. Comparing with
existing software and databases, GWAS3D uses the
latest information to build a one-stop web-based tool for
clinicians and biologists to evaluate the deleteriousness of
disease/trait-associated variants that affect transcription
regulation on a broader spectrum, especially on non-
coding genetic variation.

METHOD AND PIPELINE

Data collection and processing

GWAS3D integrates multiple genome-wide experimental
data to connect genetic variants with underlying gene
regulation mechanism through high-dimensional regula-
tory interactions. We first collected and curated the experi-
mental results of long-range interactions, for 16 different
cell types, measured by high-throughput chromosome
conformation capture technologies (5C, ChIA-PET and
Hi-C) from the ENCODE project, Gene Expression
Omnibus (GEO) database and published resources
(Supplementary Table S1). We directly used 5C and
ChIA-PET interactions in the database and processed
the Hi-C interactions by the iterative correction and
eigenvector decomposition (ICE) algorithm (25), which
can largely reduce the false positives and biases. Some
chromatin marks have been reported and validated as
the active signals of enhancers, including histone modifi-
cations of H3K4me1 and H3K27ac, DHSs and E1A-
binding protein p300 (26,27), we therefore extracted the
related ChIP-Seq peaks for the above 16 cell types from
ENCODE. We also collected ChIP-Seq data of CTCF-
binding sites, which imply transcription repression and
chromatin insulation. For predicted elements, we down-
loaded the ChromHMM genome-wide maps of chromatin
state annotations for supported cell types and extracted
the promoter, enhancer and insulator elements whose
signals are predicted as ‘Strong’. We also merged the
genomic profiles of three ENCODE tier 1 cell lines
(GM12878, K562, H1 human embryonic stem cells) to
support the ‘no cell type restriction’ option.
Genetic variants data sets were collected from

dbSNP137 (28) and 1000 Genomes Project phase 1
release version 2 (29), which comprise 52 054 804 and
26 152 995 SNPs and Indels, respectively. We assigned ref-
erence allele and all alternative alleles to dbSNP137 vari-
ants and used biallelic variants for 1000 Genomes Project.
The allele information was used to calculate the binding
affinity of TFs. Linkage disequilibrium (LD) data for 11
populations were retrieved from the merged data of
HapMap phases I+II+III. LD data for four 1000
Genomes Project super populations were computed and
retrieved from MACH (30). Genomic coordinate of each
locus was converted to GRCh37 hg19 by UCSC liftover
tool. Variants with dbSNP ID were mapped to dbSNP137
using dbSNP merge file. In addition, annotations for genes
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and other DNA elements were downloaded from the
UCSC Genome Browser. Furthermore, GWAS3D used
position frequency matrices of 73 transcription factors
motifs grouped by family (ENCODE motifs) from
ENCODE web site, which provides a comprehensive
resource of 245 known motifs curated from
TRANSFAC, Jaspar and protein-binding microarray ex-
periments, and 293 novel motifs discovered by motif
finding tools (including MEME, MDscan, Weeder,
AlignACE) using large numbers of ChIP-Seq data. To
consider the regions with evolutionary constraint, we
also used the conservative elements by genomic evolution-
ary rate profiling (31) and used these signals to prioritize
the suspected deleterious variants.

Pipeline

Given a set of GWAS data or a SNP list, GWAS3D can
detect the variants’ regulatory effects such as the assigned
population haplotype, the experimentally derived genetic/
epigenetic signals, the predicted change of transcription
factor binding affinity on different alleles and sequence
conservation in a particular cell type. The server further
calculates the combined effect of each variant and priori-
tizes them based on the probability of affecting gene regu-
lation. The overall workflow of GWAS3D is shown in
Figure 1.

Preliminary data filtering
The system accepts inputs either from an association study
or a SNP list. Many formats are supported, including the
Plink-like (32) format, VCF-like format, single dbSNP ID
and variant chromosome position. The input of associ-
ation P-value is compulsory when the GWAS effect size
is considered for prioritization. A user-defined P-value cut
off is applied to filter out the less significant SNPs and to
reduce data volume. SNPs or Indels will be checked and
mapped to dbSNP137 or 1000 Genomes Project variants.
Variants not using VCF-like format will be assigned re-
spective alleles according to dbSNP137 then 1000

Genomes Project. The web server will filter the variant
not mapped onto either dbSNP137 or 1000 Genomes
Project unless VCF-like format is used. Then, it would
fetch all variants in LD of each aforementioned leading
variants by user-defined LD standard (HapMap or 1000
Genomes Project), population and r-square (r2) cut off.

Identifying GWAS3D regulatory signals
Cell-type specific marks, including genome-wide long-
range interactions, active promoter/enhancer/insulator
marks, predicted ChromHMM maps, as well as a
user-defined promoter region, are then used to identify
the potential regulatory effects of the variants. We
defined a variant mapped onto any of these regions as a
‘GWAS3D signal’, which implies a relevant regulatory
function such as affecting distal interaction in high dimen-
sion or direct promoter activity of a target gene. The
variants that are not mapped to any regulatory regions
are filtered out at this stage.

Computing the binding affinity effect by ENCODE-motifs
To quantitatively measure the difference on the binding
affinity caused by different alleles of candidate variants
with GWAS3D signals and its significance, we used a com-
prehensive TF motif set to evaluate the possible reduced
or enhanced binding. We first computed the position
weight matrices (PWMs) from position frequency
matrices of all ENCODE motifs by converting normalized
frequency value to log-scale value using the method
described previously (33,34). Given a variant (V) with
GWAS3D signal, we took 30 bp of surrounding
sequence and constructed the mutated sequences
between the reference alleles (Ar) and the alternative
alleles (Aa1, . . .Aan). For user-selected motifs of TFs, we
scanned these sequences using PWMSCAN (35) and
fetched P-values represent the significance of each
putative TF-binding site. We set a PWMSCAN P-value
threshold (1E-3) to reduce the number of false positive
bindings. We then measured the score of binding affinity

Figure 1. The workflow of GWAS3D (see the description of pipeline for details).
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change by calculating the log-odds (LOD) of probabilities
of paired binding sites for each motif (m):

LODm VArAan

� �
¼ log10

Pm VAr

� �

Pm VAn

� �

To estimate the statistical significance of binding affinity
change, we performed permutations of on 52 054 804
SNPs in dbSNP137 and computed respective LOD of all
ENCODE motifs to form the null distribution of binding
affinity difference. We then used FastPval (36) to compute
the P-value of each LOD from aformentioned empirical
distribution.

Prioritization of regulatory variants
We combined the original GWAS signal, risk haplotype,
binding affinity significance and conservation information
to prioritize the leading variants (L) detected by GWAS.
For each L, we first find all variants (V) with GWAS3D
signal and in LD with L (r2> user selected cutoff). We
then calculated V’s phenotypically associated effect
(PGWAS) by dividing the GWAS P-value of L with the r2

between V and L in the user-specified populations. We
then selected the most significant P-value of the LOD
related to a specific TF motif (PBDA) to represent the
binding affinity effect of the variant. We further mapped
the variant to genomic evolutionary rate profiling++(37)
constrained elements and calculated the corresponding
conservation P-value (PCONS). Using the P-values of
aforementioned three independent measurements
(GWAS, binding affinity, conservation), we performed
Fisher’s combined probability test to calculate a
combined P-value, CP, for each V. We then assigned the
most significant CP from all the variants Vs to the corres-
ponding leading variant L. All the Ls are then re-ranked
according to their new CP values, with special focus on
their regulatory effects.

Plotting the GWAS3D regulatory variants
To visualize global chromosome interactions among
putative regulatory variants and their associated loci,
GWAS3D also provide informative circle plots of high-
dimensional chromosome interactions. We selected top
significant variants (defined by the user) detected by
GWAS3D and mapped them to RefGene for gene
names or Cytoband for chromosome locations. We
generated an intuitive circle graph using VIZ-GRAIL
(38) with some modifications.

WEB SERVER DESCRIPTION

Usage and interface

The system accepts four formats for variants including
either GWAS format such as Plink-like format and
single dbSNP ID, or NGS format such as VCF-like
format and single variant chromosome position resulting
from high-throughput sequencing. LD information of dif-
ferent populations for both HapMap and 1000 Genomes
Project is well supported by GWAS3D, which also allows
users to define the cutoffs of association P-value and LD.

More stringent settings will reduce the running time but
some truely associated variants with moderate effect size
might be lost. Also, GWAS3D provides information for
16 different cell types, which have been extensively
investigated on chromatin states by recent ENCODE
project, especially for long-range chromosome inter-
actions. We recommend users to select the cell type that
is relevant to the observed disease/trait in their GWAS/
NGS study. Furthermore, GWAS3D allows users to
choose relevant TF families and related known/novel
motifs, which benefit capturing the binding affinity
changes for a set of specific TFs. User can define a
specific P-value cut off for putative TF-binding site
scanning. Other settings, such as user-defined genomic
regions and visualization options, including promoter def-
inition, allowed number of variants and distal intentions
for plotting, are also adjustable by the users.
GWAS3D uses a series of user-friendly interfaces to

display the results, which summarize the potential regula-
tory effects of these variants and facilitate the identifica-
tion and selection of casual variants for follow-up
experimental validation. The detected regulatory variants
and their associated loci/interactions can be globally
viewed from a circle plot in the left panel of ‘GWAS3D
PLOT’ page (Figure 2). User can also check the overview
of current GWAS3D run and download related informa-
tion from right panel (Supplementary Figure S1). To
query the detailed information of each variant with
GWAS3D signals, we designed a variant prioritization
table as well as comprehensive tab viewers in the
‘GWAS3D INFO’ page. In the prioritization table, the
most significant regulatory variant in the LD of each
leading variant is ranked by the significance of combined
P-value. Also, variants with different type of GWAS3D
signals are marked in different colors. For example,
variants with significant TF-binding affinity change will
be marked by purple stamp, and variants with active
enhancer signal will be marked by green stamp. In the
right tabs, user can identify the deleteriousness of
selected variants by analyzing many annotations of its
regulatory features in a dynamic manner (Figure 3).

Annotation

For each variant detected by GWAS3D, we provided six
annotations, including variant summary, binding affinity,
GWAS3D signals, genomic elements, LD signals and
external annotation. Users can systematically analyze the
regulatory properties of variants based on these annota-
tions. First tab is about variant summary, showing the
important attributes related to the selected variant and
reports the information of previous GWAS result
recorded in GWASdb (39) for this variant. In the tab of
binding affinity, we listed top five significant affinity dif-
ferences of TF motifs with detailed binding sites informa-
tion. For the GWAS3D signals information, we offered a
tab to show all of mapped functional elements used in
GWAS3D and related marks information. To help user
identify all putative regulatory variants in the LD of
observed leading variant, we used one additional tab to
list related information. Lastly, three useful external
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Figure 2. The circle plot of GWAS3D for all GWAS SNPs of diabetes mellitus from NHGRI GWAS Catalog based on the K562 cell line and CEU
population. Significant GWAS3D results are presented by the circle plot. From the outer to inner, there are significant regulatory variants and distal
interaction regions, genes and genomic loci, chromosome number and distal interaction indicators. For example, GWAS SNP rs805305 is detected as
a significant regulatory variant by GWAS3D (a), this variant located on the intronic region of DDAH2 (b) in chromosome 6 (c). One of the
important regulatory features for this variant, which can be viewed from this plot, is that the region has a long-range interaction signal to another
locus near VWA7 (d), interactive elements with significant regulatory variant will start with ‘I_’). The red line indicated this signal (e), and the
intensity of interaction is represented by width.

Figure 3. The ‘GWAS3D INFO’ page for detailed information of regulatory variant. The web page consists of two parts: (a) tabular viewer for
significant variant detected by GWAS3D. (b) six annotation tabs of GWAS3D.

W154 Nucleic Acids Research, 2013, Vol. 41, Web Server issue

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/41/W

1/W
150/1107489 by N

ational Science & Technology Library R
oot Adm

in user on 02 Septem
ber 2021



browsers were encapsulated into the system to give broad
annotations and predictions including GWASrap (40),
RegulomeDB and UCSC ENCODE genome browser.
User can directly fetch the information in an internal
window.

Evaluation

We first tested the web server using a well-studied locus
known to be associated with plasma low-density lipopro-
tein cholesterol (LDL-C). We collected 17 associated
SNPs in 1p13 region (Supplementary Table S2) genotyped
in �20 000 individuals of European descent and �9000
African American individuals with LDL-C (41) and per-
formed GWAS3D pipeline on those variants under
HapMap CEU population and HepG2 cell type. We
obtained five significant regulatory variants with distin-
guished GWAS3D signals and identified a leading
variant rs12740374, as the top one in the prioritization
table. The variant locates between genes CELSR2 and
PSRC1, and was scored a more significant CP (7.89E-
46) than the original GWAS P-value (1.8E-42).
GWAS3D reported that rs12740374 directly connected
with two active enhancer marks (H3K27ac and DHS)
and located in the conserved region. Importantly,
binding affinity between allele G and risk allele T
showed substantial difference for C/EBP transcription
factors (Supplementary Figure S2). Those results were
consistent with previous finding about the role of
rs12740374 in the lipoprotein regulatory pathway (41).
We also applied same associated SNPs set on YRI and
CHB populations, besides the most significant leading
SNP rs12740374, we further detected rs629301 that
possibly disrupting the binding of transcription factor
YY1, and other GWAS3D signals (Supplementary
Figures S3 and S4). Another speculation is that this
variant may influence the recognition and targeting of
miR-199 in the 30UTR of CELSR2. This variant was fre-
quently reported as a highly associated signal in 1p13
region with LDL-C (42,43). Interestingly, we did not
observe strong enhanced signals (active enhancer or
promoter) at those GWAS-associated variants when we
used non-liver cell type such as K562, H1-hESC and
HeLa-S3. In contrast, CTCF-binding sites were observed
around some of those associated variants, which may
reflect the phenotypically cell type-specific association
(Supplementary Figure S5) (22).

To further evaluate the ability of GWAS3D for detect-
ing and prioritizing regulatory variants in a genome-wide
manner, we collected 1370 associated SNPs with prostate
cancer from NHGRI GWAS Catalog (6) and GWASdb
(39). We detected 195 variants, which have GWAS3D
regulatory signals (active promoter/enhancer/insulator
marks, TFBS affinity changes, conserved elements), after
applying the CEU population and RWPE1 cell type.
Seven variants obtained more significant CP than the ori-
ginals when analyzing top 20 putative regulatory variants
in the prioritization table (Supplementary Table S3). Most
of these significant variants exert the regulatory function
of their associated loci by high linked LD variants other
than leading SNPs. However, a noticeable result is a

leading SNP rs6983267 that harbors many GWAS3D
signals has been successfully validated by many functional
studies for affecting enhancer activity (44,45).
We then quantitatively evaluated the performance of

our method. We first collected 118 known regulatory
variants from OregAnno database (46). We randomly
selected three data sets from dbSNP with same number
of genetic variants in each of the regulatory regions
(promoter, intergenic and genome-wide). For each of
aformentioned four SNVs list, we performed GWAS3D
pipeline without considering GWAS P-value, cell type re-
striction and population LD. Wilcoxon rank-sum test
showed significant differences between OregAnno and
each random sets, with P-values of 0.0344, 0.0011 and
0.0052 for promoter, intergenic and genome-wide data
set, respectively, whereas there are no differences among
the three random data sets. The experiment demonstrated
that GWAS3D pipeline gives higher scores to regulatory
variants and thus differentiates them from random
variants.
The SNVs detected by GWAS are associated with the

disease/trait, but may not be the one with function impli-
cations. GWAS3D can find functional SNVs from GWAS
SNVs through LD and other information. To assess this
capability, we used GWAS3D pipeline to find functional
SNV for each of the selected GWAS SNVs (118 top
GWAS significant variants in intergenic and promoter
regions from GWAS Catalog database). We found there
were no significant differences between the GWAS SNVs
and any of the three random data sets (all P> 0.05,
Wilcoxon rank-sum test). However, the functional SNVs
found by GWAS3D are significantly highly scored with
P-values of 2.966E-05, 9.591E-08 and 3.034E-07
compared with the three random sets (Wilcoxon rank-
sum test), respectively. Those results further confirmed
the capability of GWAS3D in identifying functional regu-
latory variants (Supplementary Figure S6).

Server design

We implemented the GWAS3D web server with a Perl-
based web framework ‘Catalyst’, which provides a flexible
programming interface on web development. Annotation
information is stored in a back-end MySql database. We
used Oracle Grid Engine as job management system for
submitting tasks and offered three ways for users to
retrieve their jobs: encrypted links, browser cookies and
email notifications. jQuery and related UI components are
used to construct dynamic web pages. GWAS3D is a one-
stop framework with high usability and is freely available
for academic use.

DISCUSSION

We have designed a web-based tool to detect, prioritize
and annotate the regulatory genetic variations in combin-
ation with experimental data and computational predic-
tions. Particularly, this tool takes advantage of recently
generated ENCODE data, especially the experimental
long-range interactions as well as the active marks of func-
tional elements, to predict variants in the putative TFBSs
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in distal and proximal promoter regions. GWAS3D is a
tool dedicated to detect true functional variants that
control gene regulation for genetic studies. Compared
with recent software and databases such as VAAST,
HaploReg and RegulomeDB, GWAS3D integrates more
features and can be used in many scenarios. User can
identify the most probable functional variant associated
with interesting trait in one risk locus or prioritize the
leading variants when given a full list of GWAS result
or evaluate the deleteriousness of genetic variants affecting
the gene regulation without any prior effect. GWAS3D
also provides flexible configurations, such as human popu-
lation, cell type specificity and TF family classification, for
users to deal with different aspects of complex disease/
trait. For example, user may select a matched cell type/
tissue satisfying with a specific phenotype or manually
define motifs of interested TFs used in following
scanning when considering the tissue specificity of TFs.
Recently, researchers found that the disease/trait-
associated variants are highly related to active chromatin
marks in relevant cell types (22). Therefore, these distinct
features will greatly facilitate the discovery of regulatory
variants under particular condition.
There are unbalanced genomic data of multiple

domains for different cell types/tissues. For example, a
lot of data were provided by ENCODE tier 1 cell lines
(GM12878, K562, H1 human embryonic stem cells),
whereas the data were few on tier 3 cell lines. It may po-
tentially affect the quality of our annotation when
applying GWAS3D pipeline to the cell lines having
fewer data available. We therefore specially selected the
16 cell types, which included enough chromosomal
looping data (5C or ChIA-PET or Hi-C) and important
transcriptional markers data (H3K4me1, H3K27ac,
DHSs, EP300 and CTCF). To cope with tissue/cell type
limitation, we added a ‘without tissue/cell type restriction’
item in cell type selection option by merging the genomic
profiles of three ENCODE tier 1 cell lines. Because the
aforementioned three cell lines contain dynamic transcrip-
tion signals from human normal adult cells, cancer cells
and embryonic stem cells. In the future, we will continu-
ously update the number of tissue/cell type when enough
data are available for that cell line.
It was reported that many active chromatin marks are

located in the intronic and exonic region of genes (47).
Enhancers can also reside in intronic region of a gene to
coordinate the looping with active promoter of another
gene (48). Even for validated human fragments with
enhancer activity (49), we found 30.42% of these frag-
ments overlapped with coding region of genes. Thus,
genetic variants not belonging to non-coding RNAs may
also be associated with gene regulation. On the other
hand, an exonic variant can associate with particular regu-
latory process by linking variants in the LD proxy.
GWAS3D not only provides an efficient solution to inter-
pret the regulatory role of genetic variation in the
noncoding regions but also in other genic regions.
The computational process of our system is real-time,

which is different from databases such as HaploReg and
RegulomeDB, where the function annotations are pre-
computed and stored in the database in advance.

Therefore, it can dynamically deal with the genetic
variants input by users with maximum flexibility.
Despite large computational burden in the background
when LD is considered, our system can finish the job of
a meta GWAS data set (thousands of variants with
moderate GWAS significance, P< 1.0� 10�5) within a
few hours even with LD from the 1000 Genomes
Project. It will be much quicker when using HapMap
LD. To exploit the regulatory properties of personal
genomics data, GWAS3D accepts VCF-like format and
can evaluate the deleteriousness of rare/novel variation
altering gene regulation associated with personalized trait.

Furthermore, our system provides visualization and
instant annotation for detected variants. Using the circle
plotting, important regulatory variants and its affected
regions, as well as the intra/interchromosomal interactions
related to variants, can be intuitively displayed. Although
many tools, such as SeattleSeq, ANNOVAR (50) and
ENSEMBL VEP (51), can help users retrieve sufficient
variant annotations, the integrative function annotation
of GWAS3D will benefit users for instant query and
broader range of information. Therefore, besides the
genomic mapping information of variant (such as infor-
mation of gene and other genomic elements), we offered
several direct links to the servers of GWASrap (40),
RegulomeDB and UCSC ENCODE genome browser in
the internal windows of GWAS3D.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3 and Supplementary Figures
1–6.
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