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ABSTRACT

Genome-wide association studies (GWASs) have
revolutionized the field of complex trait genetics
over the past decade, yet for most of the significant
genotype-phenotype associations the true causal
variants remain unknown. Identifying and interpret-
ing how causal genetic variants confer disease sus-
ceptibility is still a big challenge. Herein we introduce
a new database, CAUSALdb, to integrate the most
comprehensive GWAS summary statistics to date
and identify credible sets of potential causal vari-
ants using uniformly processed fine-mapping. The
database has six major features: it (i) curates 3052
high-quality, fine-mappable GWAS summary statis-
tics across five human super-populations and 2629
unique traits; (ii) estimates causal probabilities of
all genetic variants in GWAS significant loci using
three state-of-the-art fine-mapping tools; (iii) maps
the reported traits to a powerful ontology MeSH,
making it simple for users to browse studies on the
trait tree; (iv) incorporates highly interactive Man-

hattan and LocusZoom-like plots to allow visualiza-
tion of credible sets in a single web page more effi-
ciently; (v) enables online comparison of causal rela-
tions on variant-, gene- and trait-levels among stud-
ies with different sample sizes or populations and
(vi) offers comprehensive variant annotations by in-
tegrating massive base-wise and allele-specific func-
tional annotations. CAUSALdb is freely available at
http://mulinlab.org/causaldb.

INTRODUCTION

From the first genome-wide association study (GWAS) on
macular degeneration in 2005 (1) to the present, thousands
of GWASs have been conducted to explore diverse quan-
titative traits and complex diseases, identifying numerous
significant associations between genotypes and phenotypes.
In particular, with the introduction of methodologies such
as imputation (2), meta-analysis (3) and multi-trait test (4),
and emergence of projects with a large sample size such as
the UK Biobank (UKBB) (5), the number of identified sig-
nificant trait/disease-associated loci is rapidly accumulat-
ing, covering most regions of the human genome. Because
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there are many restrictions on accessing the genotype and
phenotype data of individuals, publicly available GWAS
summary statistics together with derived statistical methods
are of a great value to GWAS downstream studies and for
applications such as potential causal variant fine-mapping
and validation, causal relationship inference among traits,
polygenic risk prediction, as well as drug target discovery
(6,7).

Although some catalogs of GWAS, such as the NHGRI-
EBI GWAS Catalog (8), GWASdb (9) and GRASP (10),
have been curating statistically significant variants for years,
most of these resources only focus on the reported GWAS
signals in each publication, particularly those with the most
significant P-value at the associated locus. However, given
the complexity of the linkage disequilibrium (LD) struc-
ture in the investigated GWAS cohort and statistical fluctu-
ations of association analysis, several GWAS leading vari-
ants may not necessarily be trait/disease causal variants
(11). Therefore, previous curation projects inevitably missed
many causal signals and only provided marker information
on genetic associations. Fortunately, recent GWAS commu-
nities advocate the public release of GWAS summary statis-
tics, and some pertinent data have been archived in exist-
ing databases including LD Hub (12), GWAS Catalog (8),
PhenoScanner (13), MR-Base (14), Gene ATLAS (15) and
GWAS ATLAS (16). Nevertheless, these resources have
only collected limited or specific GWAS summary statis-
tics to date and were not particularly designed to prioritize
causal variants. However, statistical fine-mapping technolo-
gies were developed to identify underlying causality from
GWAS summary information (17). Although some recent
GWASs reported their associated signals along with the
fine-mapping results, majority of existing GWASs did not
point out potential causal variants in each significant lo-
cus. At present, there is no resource that follows a consistent
procedure to systematically fine-map potential trait/disease
causal variants at the genome-wide level. Moreover, online
manipulation of genome-wide summary statistics involves
intensive network data transmission load, and it is labo-
rious for researchers to deploy fine-mapping pipeline on
their own. Despite several web-based visualization tools, in-
cluding LocusExplorer (18) and LocusZoom.js (19), that
attempt to provide researchers with options for displaying
potential causal variants, an online resource that can effi-
ciently help visualize and operate genome-wide summary
statistics and elucidate underlying causal signatures is still
lacking. Finally, statistical fine-mapping usually fails to dis-
tinguish a true causal variant from extremely high LD (20);
therefore, the integration of fine-scale functional annotation
information is required to further prioritize fine-mapped
variants.

To address the aforementioned issues, we herein devel-
oped a database called CAUSALdb, in which we curated
and collected the majority of the published GWASs having
complete summary statistics and performed statistical fine-
mapping using three commonly used tools. CAUSALdb
allows users to explore causal signatures across studies
on variant-, gene- and trait-levels. By integrating compre-
hensive functional annotation resources, we constructed a
highly interactive viewer to visualize and annotate poten-
tial causal variants for each trait/disease. CAUSALdb is

free and open access: http://mulinlab.org/causaldb or http:
//mulinlab.tmu.edu.cn/causaldb.

MATERIALS AND METHODS

GWAS summary statistics curation and integration

We collected publicly available GWAS summary statis-
tics from two major sources according to the investigated
cohorts: UKBB and non-UKBB cohorts. The latter in-
cludes samples from other specific projects (including meta-
analysis, which combines the UKBB cohort). GWAS sum-
mary statistics of the UKBB cohort were collected from
three resources: Neale Lab UKBB v3 (http://www.nealelab.
is/uk-biobank), Gene ATLAS (15) and GWAS ATLAS
(16). Although they are all derived from the UKBB co-
hort, the incorporated samples, quality control (QC) pro-
cesses, and association models are different. Consequently,
the summary statistics among these datasets could be dis-
tinct (Supplementary Table S1). For Neale Lab’s release
data containing over 10 000 tests, to exclude low power
results, we only included ICD10 binary traits with total
sample size of >50 000 and number of cases >1000, and
selected continuous traits with total sample size >50 000
tested by PHESANT (21). Besides, we integrated GWAS
summary statistics of non-UKBB cohorts from several pub-
lic databases, including GWAS Catalog (8), LD Hub (12),
GRASP (10), PhenoScanner (13) and dbGaP (22). We
also curated hundreds of summary statistics from websites
of consortiums such as PGC (https://www.med.unc.edu/
pgc), MAGIC (https://www.magicinvestigators.org), SS-
GAC (https://www.thessgac.org), and JENGER (http://
jenger.riken.jp/en/). We only included studies for which the
original publication was available and if population-related
information and sample size were clearly recorded. To re-
move duplicate GWAS summary statistics among these re-
sources, we identified redundancy by publication source and
only retained the one with the most information. We ex-
tracted the sample size, population, and source information
across these databases and the original study. GWAS pop-
ulation information was mapped to five super-populations
(AFR, AMR, EAS, EUR and SAS) in the 1000 Genomes
Project (1KGP). To ensure accurate fine-mapping using the
1KGP LD information, we did not include GWASs con-
ducted on mixed populations.

Ontology mapping

We manually mapped the reported traits of included
GWASs to Medical Subject Headings (MeSH) (23). To
ensure the accuracy of trait mapping, we accounted for
some auxiliary information within original studies and de-
scriptions using MeSH terms. For UKBB cohort traits,
we considered the descriptions in ICD10 (https://icd.who.
int/browse10/2016/en) and related notes on UKBB Show-
case. We also sought suggestions from the search function
of MeSH (https://meshb.nlm.nih.gov/search). For example,
let us consider the ICD10 term ‘insulin-dependent diabetes
mellitus’ in UKBB; we searched this term in the MeSH
Browser and got a match for ‘diabetes mellitus, type 1.’ For
non-UKBB cohort traits, we took into account the Abstract
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and list of suggested MeSH terms on PubMed. For exam-
ple, the reported trait of a recent GWAS was ‘primary scle-
rosing cholangitis’ (24); ‘cholangitis, sclerosing’ was deter-
mined to be the relevant MeSH term on PubMed. There-
fore, an exact match could be determined. CAUSALdb
presents a tree of traits that has the same architecture as
Tree View in the MeSH Browser (https://meshb.nlm.nih.
gov/treeView).

Pre-fine-mapping QC and summary statistics standardiza-
tion

GWAS fine-mapping methods based on summary infor-
mation usually require complete association statistics [such
as variant coordinate, minor allele frequency (MAF),
effect/non-effect allele, P, effect size (beta-coefficient;
BETA), and standard error (SE)] and LD information on
variants. To ensure that these curated GWAS summary
statistics fit the input requirements of fine-mapping tools,
we performed a series of QC steps on the raw downloaded
data. First, we inspected the coordinates and dbSNP ID
(rsID) for each variant and converted non-GRCh37 coordi-
nates to GRCh37 (hg19) coordinates. When either the coor-
dinate or rsID was missing, we extracted it from dbSNP 151.
The statistics were excluded when both the coordinates and
rsID were missing. Second, CAUSALdb only curated sum-
mary statistics with an explicitly defined effect allele. When
only the effect allele was available, the non-effect allele was
inferred from 1KGP biallelic sites, and we excluded vari-
ants if the non-effect allele could not be clearly determined.
Third, MAF is required by certain fine-mapping tools, but
it was at times unavailable in the raw data. In such cases, we
converted other allele frequencies (such as reference allele
frequency or effect allele frequency) to MAF or estimated
it from matched 1KGP populations. Fourth, we discarded
summary statistics that did not have P-value and effect size
[BETA or odds ratio (OR)] for test variants. In some cases
for which standard error (SE) of BETA or confidence in-
tervals of OR was missing but effect size was available, we
calculated SE using effect size, P, and sample size using
the quantile function. In addition, if INFO metric of im-
putation was available in the raw data, variants with INFO
<0.9 were filtered out. Thus, for all summary statistics in the
Neale Lab UKBB cohort, we excluded variants with INFO
<0.9.

GWAS fine-mapping

LD block partition. To perform fine-mapping on curated
GWAS summary statistics, we partitioned the genetic vari-
ants with relatively independent LD blocks estimated using
LDetect (25). We checked each file and extracted the vari-
ants in LD blocks (termed causal blocks) that had at least
one genome-wide significant variant (P-value ≤ 5E−8). For
studies without any genome-wide significant variants (P-
value ≤ 5E−8), we only selected the LD block in which the
variant with the lowest genome-wide P-value located as the
potentially causal block for each trait. The GWAS summary
information for each causal block was then reformatted into
the format required by the fine-mapping tools.

LD estimation. We estimated the LD information of
GWAS variants in each LD block using five super-
populations (AFR, AMR, EAS, EUR and SAS) from the
1KGP reference panel. Since LDetect only contains LD
block information for three continental populations, we
assigned the five 1KGP super-populations to them (map-
ping EUR and AMR to European population, EAS and
SAS to Asian population, and AFR to African population).
For each 1KGP super-population, we only retained biallelic
variants and discarded sites with MAF = 0. To accelerate
the process, we further divided the VCF genotype file into
LD block-wise files. We mapped test variants to correspond-
ing variants in the reference panel according to identical co-
ordinates and alleles, and harmonized complementary alle-
les for reverse strands. We used the PAINTOR (26) frame-
work to calculate pairwise Pearson correlation coefficients
between each variant in the LD block and block-wise LD
matrix.

Fine-mapping. We performed fine-mapping based on sum-
mary statistics and matched LD matrix for each causal
block of each trait using three commonly used tools, namely
FINEMAP (27), PAINTOR (26) and CAVIARBF (28)
(Supplementary Table S2). We assumed that there was only
one causal variant in a causal block and used the rec-
ommended parameters of the tools. These fine-mapping
tools can report the posterior probability (PP) of each vari-
ant being causal in the specific model. A credible set is
the set of variants with a sum of PP of more than �,
which means considering the cumulative sum of PPs from
the largest to smallest until it is not smaller than �. In
CAUSALdb, we reported potential causal variants within
the credible set upon the adjustment of �. The code for re-
producing the CAUSALdb GWAS fine-mapping procedure
can be found at https://github.com/mulinlab/CAUSALdb-
finemapping-pip.

Post-fine-mapping QC

Because some human genetic variants in 1KGP are not
complete, there are variants without any LD information
in some GWASs, which may markedly affect causal variant
estimation in the process of fine-mapping. Thus, to avoid
overestimation of causality for such variants, we excluded
them (P-value > 5E−5) from the credible set, but still al-
lowed users to inspect the original summary statistics. Also,
for variants without LD information, we set the default PP
value to −1. Since fine-mapping results may be inconsistent
among three applied tools, we used rank product value to
combine PP ranks for each credible set variant and priori-
tize the potential causal variants.

Variant-level potential pleiotropy estimation

We selected the most representative GWAS which contains
maximum causal blocks for each MeSH term. Then we in-
spected the causal blocks in GWAS pairs and calculated the
PP of a variant influencing both traits (potential pleiotropy)
using gwas-pw (model 3) (29). Since the overlapping sam-
ples or comorbid samples were largely unreported accom-
panying released GWAS summary statistics, we empirically
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set the expected correlation (-cor in gwas-pw) between two
traits as described in a recent simulation study (30). For
the UKBB cohort studies we were certain that they contain
overlapping samples and incorporate similar categories of
traits, we varied the expected correlation of 0.09, 0.18, 0.27,
0.36, 0.45 according to the hierarchy of MeSH tree. For ex-
ample, the tree numbers of Heart Failure and Atrial Fib-
rillation are C14.280.434 and C14.280.067.198 respectively
which all belong to C14.280 parent node of Heart Diseases.
We hence classified the relationship between these two dis-
eases into Level 2, so the expected correlation in summary
statistics between Heart Failure and Atrial Fibrillation was
set to 0.18. For non-UKBB cohort studies which we cannot
ascertain overlapping samples, the expected correlation was
uniformly set to 0.

Functional annotation

Functional annotations integrated into CAUSALdb can
be divided into four major categories according to the at-
tributes and usage of the collected datasets: variant in-
formation, functional prediction, functional evidence, and
trait association. Variant information annotations report
basic information, including variant genomic features de-
rived from dbSNP and CADD (31) and variant allele fre-
quency derived from gnomAD (32) and 1KGP phase 3 (33).
Functional prediction annotations incorporate several inte-
grative variant function prediction results from frequently
used resources, including aggregated conservation scores
from CADD, aggregated non-coding variant prediction
scores from regBase (34), aggregated missense mutation
pathogenic scores from dbNSFP (35), aggregated splicing
altering prediction scores from dbscSNV (36), aggregated
miRNA-target altering prediction scores from dbMTS, and
several function predictions from HaploReg (37), Regu-
lomeDB (38) and InterVar (39). Functional evidence anno-
tations integrate large-scale tissue/cell type-specific epige-
nomic profiling (e.g. histone modifications, transcription
factor binding, open chromatin and nascent transcription)
data from different resources, such as the Roadmap Epige-
nomics Project (40), CistromeDB (41) and FANTOM5
Project (42). Trait association annotations collect impor-
tant disease/trait-associated information, including GTEx
eQTLs (43), GWAS Catalog significant variants, ClinVar
reported variants (44), DisGeNET recorded variants (45),
and ICGC somatic mutation information (46) (Supplemen-
tary Table S3).

Database design

CAUSALdb was established using a JAVA-based web
framework. We stored the partitioned summary statistics
and fine-mapping results of causal blocks in flat files. The
information pertaining to curated GWASs and potential
causal variants was stored in MySQL for quick retrieval.
The annotation information was indexed and stored us-
ing MySQL or Tabix (47). We generated highly interactive
Manhattan and LocusZoom-like plots for users to inspect
causal blocks using jQuery, D3.js, and related JavaScript

modules. The overall architecture of CAUSALdb is shown
in Figure 1.

RESULTS

CAUSALdb statistics

We started with the collection and curation of GWAS sum-
mary statistics from various resources and publications (de-
tails in Materials and Methods). After pre-fine-mapping
QC, up to the latest update in July 2019, CAUSALdb cu-
rated 3052 fine-mappable GWAS summary statistics in to-
tal: 1237 belonged to non-UKBB cohorts and 1815 be-
longed to the UKBB cohort. In total, 2629 unique traits
were identified that could be mapped to 855 MeSH terms.
According to the ontology mapping, around two-thirds of
the studies were based on common diseases such as cardio-
vascular diseases and neoplasms, while the remainder fo-
cused on quantitative traits of human phenotypes (Supple-
mentary Figure S1). In the non-UKBB cohort data, 92.07%
of studies were based on the EUR population, 6.91% on
EAS population, and only seven, six, and two studies were
based on AMR, AFR and SAS populations, respectively
(Supplementary Figure S2), which indicates an unequal an-
cestry composition in the current GWASs. The average sam-
ple size in the non-UKBB cohort studies was 43 516, with
a meta-analysis of atrial fibrillation (48) having the largest
sample size (1 030 836). In the UKBB cohort data, we incor-
porated summary statistics from three independent sources;
the collected data therefore included varied sample sizes and
distinct summary statistics (Supplementary Table S1).

We performed systematic fine-mapping using three com-
monly used tools and observed highly concordant results in
identifying credible set variants in each causal block (Sup-
plementary Figure S3). Among all identified causal blocks
in the CAUSALdb, only five of them show relatively low
correlation between FINEMAP and other two tools (Spear-
man’s Rank correlation coefficient <0.8, Supplementary
Figure S3A and Table S4), which may due to the Shot-
gun Stochastic Search algorithm used in FINEMAP. Also,
the credible set size of each causal block is largely similar
across fine-mapping tools, especially between CAVIARBF
and FINEMAP, probably due to they used similar statisti-
cal models (Supplementary Figure S3B). By pooling fine-
mapped variants in the 95% credible set (� = 0.95), we built
a dataset composed of 962 176 potential causal variants cor-
responding to 5 097 732 genotype–phenotype associations
across the entire human genome (Supplementary Figure
S4). The genomic distribution of these variants showed that
98.9% of them were located in non-coding genomic regions
(Supplementary Figure S5), emphasizing the pivotal role of
regulatory variants in the development of complex traits.
Among these variants, ∼55% were identified by more than
one study, which implies that shared genetic effects among
traits could be very common. Notably, many test vari-
ants with genome-wide significance (P-value ≤ 5E−8) were
not present in the credible set, which included 1 339 760
unique variants and 11 528 369 genotype-phenotype asso-
ciations, demonstrating that fine-mapping can greatly nar-
row down potential causal hits. In 1703 relatively indepen-
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Figure 1. Data processing workflow and overall architecture of CAUSALdb.

dent LD blocks of EUR population defined by LDetect
(25), 1699 blocks were noted to contain potential causal
variants. Among these blocks, 99.88% contained potential
causal variants across multiple studies; 6p21.32 (HLA lo-
cus) was the top causal block, associated with 514 studies
and 176 traits. To investigate the potential pleiotropic vari-
ants in CAUSALdb, we performed joint analysis in GWAS
pairs using gwas-pw (29). We in total identified 24 286 po-
tential variant-level pleiotropy (PP > 0.5 in gwas-pw model
3) for 219 880 GWAS pairs. Although this estimation can-
not further distinguish vertical or horizontal pleiotropy,
it may help users cautiously interpret the potential causal
variants in the context of shared genetic effect.

Database usage and interface

Query entries. CAUSALdb allows users to explore vari-
ant causality across studies through querying variants,
traits, genes, or chromosome loci of their choice. The gen-
eral query result displays all matched GWASs and related
study summaries, including trait name, sample size, popu-
lation, number of cases/controls, number of variants with
summary statistics, publication information, source link,
mapped MeSH terms, as well as our QC notes (Supplemen-
tary Figure S6). In terms of specific functions, by searching
for either rsID or variant chromosome position, users can
visualize the PP of the causality versus the original GWAS
P-value in a scatter plot (Figure 2A). The dot size in the
plot represents the study sample size and the dot color rep-
resents the mapped MeSH term. Obviously, variants on the
upper right corner are more likely to be causal. Users can
inspect the summary table on the right of the scatter plot
and switch the fine-mapping tools via a drop-down box. The
link on the hover tip can directly guide users to the causal
block viewer of a particular study. As fine-mapping would
have narrowed down the significant variants to a smaller set,
users sometimes may get no results when searching for rsID.
We have included an additional query function for users to
browse variants with genome-wide significance by clicking

‘Only show P-value’ in a phenome-wide-like plot (Supple-
mentary Figure S7). In addition, we listed the traits asso-
ciated with potential pleiotropy of queried variant in this
plot. On searching for a trait name, auto-completion should
help users select the potential trait from the mapped MeSH
terms. In the search result, users can see all causal blocks
across the studies related to the searched trait in a heatmap
plot (Figure 2B). Each column represents an independent
causal block and each row depicts a separate GWAS. The
grid color in the heatmap represents the number of poten-
tial causal variants in a corresponding causal block. On the
hover tips, users can find the median GWAS P-value of the
credible set, and on clicking the block genomic position,
they can navigate to the corresponding block view page.
By searching for a gene name, considering that the aver-
age length of LD blocks is 1.6 Mb, the system will locate
the target LD block in which the searched gene is present
and display a block-wise causality plot (the number of po-
tential causal variants in the LD block versus the median
GWAS P-value of these variants) (Figure 2C). By search-
ing for a chromosome region that is <10 Mb, users can in-
vestigate the causality of the most relevant LD block over-
lapped with the input region, and the results are similar to
those when searching for a gene. By mapping the reported
traits to MeSH, we established an ontology tree for users
to browse the profile information of our collected GWASs,
which further facilitates the navigation to traits of interest
and the related causal block viewer (Supplementary Figure
S8).

Causal block viewer. To ensure interactive visualization
and seamless operation of genome-wide summary statis-
tics in the web environment, we designed an optimized web
architecture to reduce intensive network data transmission
load and developed dynamic Manhattan and LocusZoom-
like plots. We first introduced a causal block viewer that in-
tegrates QQ, Manhattan, and LocusZoom-like plots along
with a table displaying credible set variants and a variant an-
notation panel into a single user-friendly web page (Figure
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Figure 2. Query results from CAUSALdb. (A) Scatter plot of −log10(P-value) and posterior probability for rs12740374. (B) Heatmap plot of the number of
potential causal variants in all causal blocks across CAD GWASs. (C) Scatter plot of −log10(median P-value) and the number of potential causal variants
for CDKN2B located causal block.

3). Specifically, QQ (Figure 3A) and Manhattan (Figure 3B)
plots can be used to evaluate the quality of GWAS globally.
By clicking the highlighted strip or ‘Prev Block’ and ‘Next
Block’ buttons in the Manhattan plot, users can switch the
causal block of interest. All GWAS variants in each causal
block can be displayed in the LocusZoom-like plot (Fig-
ure 3C), and users can zoom in or zoom out smoothly us-
ing the buttons. Moreover, we added some glyphs to sig-
nify the credible set and leading variant. Triangles repre-
sent the variants in the credible set and the diamond repre-
sents the potential causal variant with leading GWAS sig-
nal. When the leading variant is not in the credible set, it
will be marked with an inverted triangle. Users can click
each variant in the plot to check the summary statistics
and causality information, and even reset any variant as an
LD proxy. By dragging the slider bar, users can adjust the
fine-mapping tools, credible set threshold, and LD r2 to fil-
ter out variants in the LocusZoom-like plot. The bottom
table displays summary statistics information and product
rank values on potential causal variants as the change of
credible set threshold. To further distinguish a true causal
variant from an extremely high LD, users can select poten-
tial causal variants in credible set and compare functional
prediction scores (e.g. CADD or FATHMM-MKL) or the
number of overlapped epigenomic features (e.g. chromatin

accessibility or transcription factor binding) in popup bar
plots. Importantly, users can download complete summary
statistics for the causal block for further analysis by click-
ing the ‘Download Data’ button. Also, the fine-mapping re-
sults of all causal blocks of each GWAS are stored in a com-
pressed file, which can be downloaded in bulk.

Functional annotations. Statistical fine-mapping usually
contains false positives and fails to distinguish a true causal
variant from other variants in extremely high LD; there-
fore, it requires functional annotation information to fur-
ther prioritize fine-mapped variants. CAUSALdb integrates
and compiles over 22 annotations (Supplementary Table
S3) from four major categories according to the attributes
and usage of collected datasets: variant information, func-
tional prediction, functional evidence, and trait association
(details in Materials and Methods). All annotations can be
inspected from the right panel of the causal block viewer
and are downloadable (Figure 3D).

Application of CAUSALdb to identify potential causal vari-
ants

We investigated the reliability and practicality of
CAUSALdb using GWAS results for coronary artery
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Figure 3. Causal block viewer in CAUSALdb. (A) QQ plot of selected GWAS. (B) Manhattan plot of selected GWAS, with highlighted blocks that are
clickable. (C) LocusZoom-like plot of the selected causal block from Manhattan plot. (D) Functional annotation panel of a selected variant in LocusZoom-
like plot.

disease (CAD). By searching for the trait name ‘Coronary
Artery Disease,’ we found six CAD GWAS summary
statistics from the EUR population in the current version
of CAUSALdb (Supplementary Table S5). Among them,
the largest study, involving meta-analysis of the UKBB
and CARDIoGRAMplusC4D samples (49), showed the
highest number of causal blocks (n = 165). In the original
publication, the authors performed GWAS fine-mapping
on 161 CAD risk loci using PAINTOR (26). Although they
only considered variants having r2 >0.1 with the leading
variant and GWAS P-value of <0.01 as independent loci,
we found highly consistent PP of potential causal variants
between the original results and CAUSALdb (Pearson
correlation coefficient: PAINTOR = 0.922, CAVIARBF
= 0.920, FINEMAP = 0.921; Supplementary Figure
S9A). For example, CAUSALdb recapitulated 100% (8/8)
variants with PP equal to 1 and 92% (69/75) variants with
PP >0.5. These variants with high PP were very easy to
distinguish from others and were more likely to be causal.
One of the eight variants with the highest PP, rs11556924,
was also supported by four additional CAD GWASs in
CAUSALdb, with average PP of 0.955 (Supplementary
Figure S9B and Table S6). This missense variant has been
reported to disrupt NIPA function and plays a critical role
in cell cycle regulation (50).

Distinguishing a true causal variant from an extremely
high LD is a challenging task, and fine-mapping usually
generates a challenging credible set in which highly linked
variants achieve a similar PP of causality. For example, at
locus 15p22.3 in the CAD GWAS mentioned before, there
were five variants in the credible set, with similar PP of
∼0.2 (Supplementary Figure S9C). CAUSALdb provides

base-wise variant annotations and tissue/cell type-specific
epigenome data that help researchers determine true causal
variants. By inspecting the functional annotations from
CAUSALdb, we found that although rs17293632 did not
obtain the highest PP, it could be a causal CAD variant
at 15p22.3, with substantial supporting evidence. First, ac-
cording to our aggregated conservation scores, rs17293632
was noted to be more conserved than the other four variants
(Supplementary Table S7). Second, this variant obtained
significantly higher functional scores than the other vari-
ants according to our integrated non-coding variant func-
tional prediction tool, namely regBase (34) (Supplementary
Figure S9D). Third, rs17293632 was found to overlap with
most epigenomics signals such as open chromatin, histone
modification, and transcription factor binding (Supplemen-
tary Figure S9E), particularly in CAD-related tissues/cell
types such as the endothelium and blood tissue. Finally,
we found that rs17293632 was top-ranked in RegulomeDB
and identified as the top causal variant in other complex
traits/diseases, such as asthma and inflammatory bowel
disease; this further supported its causal and potentially
pleiotropic effects. Besides, two recent studies reported that
this variant disrupts the binding of the AP-1 transcription
factor (51,52).

As for quantitative traits, we illustrated the effectiveness
of CAUSALdb fine-mapping results by taking body mass
index (BMI) as example. In the 31 collected GWASs of
BMI for EUR population, genetic locus 16q12.2 was found
containing potential causal variants in most studies (29,
93.5%). The credible set variants of these studies at this lo-
cus all lie in the first intron of FTO gene. Notably two poten-
tial causal variants in perfect LD, rs1558902 and rs1421085,
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were found in credible sets of 18 and 14 BMI studies, respec-
tively, which are far more than only six studies involving
the third one rs9937053, indicating the significance of func-
tional follow-up to dissect their biological mechanism. The
variant rs1421085 has been proven to repress mitochon-
drial thermogenesis in adipocyte precursor cells by disrupt-
ing a conserved motif for the ARID5B repressor and affect-
ing IRX3 and IRX5 enhancer activity (53). Taken together,
CAUSALdb offers a comprehensive knowledgebase to fine-
map potential causal variants that confer susceptibility to
complex traits/diseases.

DISCUSSION

Identifying and interpreting the genetic causality of com-
plex traits is a major task in the post-GWAS era. Although
several statistical fine-mappings have been used in many
recent GWASs to estimate potential causal variants, the
complexity of data representation as well as discrepan-
cies of the applied statistical methods have inhibited sys-
tematic and valuable curation. Nowadays, an increasing
amount of summary-level GWAS data has become pub-
licly available, which provides unprecedented opportuni-
ties to gain in-depth understanding of the genetic mech-
anisms of complex traits via integrative analysis. How-
ever, no resources have leveraged published GWAS sum-
mary statistics to comprehensively fine-map causal variants
and annotate their potential mechanisms. Herein, we per-
formed strict quality control process and finally selected
3,052 fine-mappable GWAS summary statistics. We devel-
oped a unique user-friendly platform called CAUSALdb
that integrates a repository of high-quality GWAS sum-
mary statistics, identifies potential causal variants by three
state-of-the-art fine-mapping tools, and offers comprehen-
sive variant annotations.

We used several well-known GWAS loci as examples and
found that CAUSALdb could identify potential causal vari-
ants that were verified or were about to be verified; more-
over, it facilitated the identification of true causal vari-
ants in a difficult credible set. The query functions of
CAUSALdb are very beneficial for cross-study and cross-
trait comparisons of causality. For instance, rs17293632
shows notable PP of causality in multiple disease categories,
including cardiovascular and autoimmune diseases, imply-
ing that this variant plays a role in pleiotropy. Furthermore,
CAUSALdb provides fine-mapping results of the 95% cred-
ible set of all GWASs, which may be a useful resource
for researchers in other fields, such as disease risk predic-
tion and drug repositioning. The well-formatted summary
statistics of each causal block are also downloadable, en-
abling specific downstream analysis such as Mendelian ran-
domization and colocalization. Although we have estab-
lished several novel online functions for trait causality in-
vestigation, there are still some points that can be further
improved in future. Many complex genetic loci harbor mul-
tiple causal variants for a particular trait/disease (54,55);
given the computational burden and relatively low accuracy
of multi-causal variants inference, CAUSALdb only as-
sumes a single causal signal in each independent LD block.
However, it allows users to download block-wise summary
statistics for customized fine-mapping. In addition, several

fine-mapping approaches in trans-ethnics have been pro-
posed (56); CAUSALdb excludes GWASs with mixed pop-
ulations in the current version because of complex LD pat-
terns. As the GWAS summary data in CAUSALdb are from
worldwide populations and considering the restrictions on
obtaining original individual genotypes or large LD refer-
ences (57), we only extracted LD information from 1KGP,
which may not reflect the actual LD pattern in the cor-
responding GWAS cohort. In future studies, we plan to
address the aforementioned issues by adding new features
to CAUSALdb. We also aim to perform monthly cura-
tion of newly available GWAS summary statistics and fre-
quently update variant information and functional anno-
tations. In conclusion, with the accumulation of summary-
level GWAS data, we believe that CAUSALdb should con-
siderably aid researchers to interrogate the genetic mecha-
nisms underlying diseases, thereby creating a significant im-
pact in the post-GWAS era.
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