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THE BIGGER PICTURE In complex organisms, highly compact chromatin organizes long DNAmolecules in
the cell nucleus. Surprisingly, these DNAmolecules can remain untangled, a property that has recently been
attributed to a process called chromatin loop extrusion. Cohesin proteins, which serve as the basic units for
loop extrusion, work together with specific transcription factors to create distinct DNA loops. These loops,
which are controlled by an elegant architecture protein called the CCCTC-binding factor (CTCF), play a
crucial role in regulating genes, cell development, and disease progression. Current computational
methods for predicting CTCF-mediated chromatin loops take into account both DNA sequence and chro-
matin features, but they struggle to capture fine-grained patterns, possibly due to limitations in machine-
learning algorithms. Deep-learning algorithms could reveal detailed patterns and enhance our understand-
ing of CTCF binding’s functional consequences.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
CCCTC-binding factor (CTCF) is a transcription regulator with a complex role in gene regulation. The recog-
nition and effects of CTCF on DNA sequences, chromosome barriers, and enhancer blocking are not well un-
derstood. Existing computational tools struggle to assess the regulatory potential of CTCF-binding sites and
their impact on chromatin loop formation. Here we have developed a deep-learning model, DeepAnchor, to
accurately characterize CTCF binding using high-resolution genomic/epigenomic features. This has revealed
distinct chromatin and sequence patterns for CTCF-mediated insulation and looping. An optimized imple-
mentation of a previous loop model based on DeepAnchor score excels in predicting CTCF-anchored loops.
We have established a compendium of CTCF-anchored loops across 52 human tissue/cell types, and this
suggests that genomic disruption of these loops could be a general mechanism of disease pathogenesis.
These computational models and resources can help investigate how CTCF-mediated cis-regulatory ele-
ments shape context-specific gene regulation in cell development and disease progression.
Patterns 4, 100798, August 11, 2023 ª 2023 The Authors. 1
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INTRODUCTION
 ration of the predicted DeepAnchor score into a previous loop

competition and extrusionmodel (LEM)40 revealed that the score
The diverse interactions between enhancers and target genes

have been systematically profiled to clarify tissue/cell-type-spe-

cific transcriptional regulation.1,2 However, the mechanisms un-

derlying the precise relationships between genes and enhancers

at varied distances remain unclear. As the main insulator-related

transcription factor (TF) discovered in vertebrates, CCCTC-bind-

ing factor (CTCF) assists cohesin in chromatin loop formation,

which is believed to constitute the fundamental biophysical basis

for distal gene regulation.3–9 The loop extrusionmodel10,11 states

that cohesin dimers load onto DNA at NIPBL-binding sites and

slide along the DNA until they reach the anchors, which are typi-

cally bound by specific cofactors, such as CTCF, YY1, and

ERa.12–14 CTCF-anchored loops enclose the chromatin loops

mediated by YY1 and ERa, which directly mediate enhancer-

promoter interactions.14 The nested genome units are termed

insulated neighborhoods (INs). Substantial evidence suggested

that these structures constitute the mechanistic underpinnings

of higher-order chromosome organizations,15,16 such as topo-

logically associating domains (TADs).17,18 Enhancers tend to

regulate genes within the same IN/TAD, while the regulation

across different INs/TADs is more likely to be prevented.19,20

Therefore, characterizing CTCF-binding patterns and their regu-

latory consequences would greatly facilitate analyses of in-

depth 3D genome regulation.

CTCF and its associated cis-regulatory elements (CREs), or

CTCF-mediated CREs, are critical in regulating tissue/cell-

type-specific gene expression by maintaining chromatin domain

boundaries or blocking enhancer activities. Furthermore, CTCF

is a versatile TF with several roles in different scenarios, which

include gene activation, transcriptional repression, and pausing

and alternative splicing.21–26 Therefore, it is necessary to distin-

guish insulator or looping-related CTCF-binding sites (CBSs)

from those with other functions. Numerous analyses of CTCF

functional heterogeneity in the nucleus determined that the

CTCF-binding motif could be the key to understanding CTCF

behavior at specific sites.27–29 For example, insulation potency

relies greatly on both the number of CBSs in tandem and an up-

stream sequence flanking the core CTCF motif.28 Additionally,

the CBSs located at loop anchors tend to be arranged in conver-

gent orientation in CTCF/cohesin chromatin loop formations.30

However, these aforementioned studies either lacked the ability

to enumerate the feature patterns of individual CBSs or were

limited to specific genomic loci.

Numerous computational tools have been developed to qual-

itatively or quantitatively predict CTCF-mediated loops,31–40 but

few could specifically evaluate the regulatory potential of the

DNA sequence at CBSs and how it affects loop formation. More-

over, the feature factors or combinations that determine the

specificity among different types of functional CTCF-binding

events remain elusive. Furthermore, it is uncertain whether this

knowledge can be utilized to enhance genome-wide CTCF-

anchored loop prediction. In this study, we developed an inter-

pretable deep-learning model, termed DeepAnchor, to query

the genomic/epigenomic feature types that determine whether

a CBS is insulator/cohesin/loop associated. Large-scale base-

wise genomic and epigenomic features the high-resolution crit-

ical patterns for CTCF-mediated insulation and looping. Incorpo-
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aided the combined model (LoopAnchor) in outperforming the

existing CTCF-anchored loop prediction methods. Furthermore,

a novel landscape of tissue/cell-type-specific CTCF-anchored

loops across 52 human tissue/cell types was used to interpret

disease-causal variants. Together with the compiled resources,

this method will facilitate mechanistic research on 3D chromatin

dynamic regulation during cell development and disease

progression.

RESULTS

DeepAnchor enables high-confidence CTCF-binding
pattern characterization
The key feature of DeepAnchor is the implementation of a deep-

learning model that uses base-wise features to detect CTCF-

mediated CREs. Typically, the sequence and chromatin status

of CBSs in specific tissue/cell types are analyzed using a 1D

feature vector, in which regional feature values are averaged

for each CBS, regardless of heterogeneous signals across the

locus.32,35 However, a true CTCF-mediated CRE is differentiated

from other CBSs by its in-depth architectures,4,28,41 which pre-

sents new requirements for pre-modeling feature characteriza-

tion. One straightforward solution is to profile a CTCF-binding

event using the high-resolution features that surround the CBS.

In our implementation, 44 quantitative base-wise genomic/epi-

genomic features within the ± 500 bp region for each CBS

were obtained from CADD annotation,42 and the DNA sequence

within ± 500 bp of the CBS was extracted and represented by

one-hot encoding (Table S1). Consequently, concatenating

large-scale annotations with converted DNA features at the

base-wise level generated a 1,000 3 48 feature matrix for each

CBS (Figure 1A, top left).

We modeled three major forms of CBSs across the whole hu-

man genome: insulator-associated CBS (insulator CBS), cohe-

sin-associated CBS (cohesin CBS), and loop-associated CBS

(loop CBS). These CTCF-mediated CREs share a common

core CTCF-binding motif but can display varied regulatory func-

tions. To prepare high-quality training data for different types of

CBS learning, each selected positive site was required to contain

(1) putative CBS identified by motif scanning and (2) observed

CBS detected by CTCF chromatin immunoprecipitation

sequencing (ChIP-seq) at a given tissue/cell type. For insulator

CBS, the selected sites were intersected with genomic seg-

ments exhibiting the ChromHMM insulator state (15-state

model). For cohesin CBS, the selected sites were overlapped

with peaks detected by cohesin ChIP-seq in matched cell types.

For loop CBS, the selected sites were required to be in cohesin

loop anchors, which are identified by chromatin interaction anal-

ysis with paired-end tag sequencing (ChIA-PET) data from the

same cell type (Figure 1A, top right). Furthermore, we randomly

selected an equal number of negative samples from the whole

CBS pool. To avoid ambiguous results, multiple CBSs sharing

the same CTCF/cohesin ChIP-seq peak(s) or the same cohesin

loop anchor(s) were excluded (see experimental procedures).

Incorporating base-wise features of the region spanning the

selected CBSs significantly expands the feature volume and

scale, which can yield an overwhelming amount of information
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Figure 1. Structure and performance of DeepAnchor model

(A) Schematic view of DeepAnchor model. Base-wise chromatin features and DNA sequences are extracted for all candidate CBSs identified by motif scanning.

Positive (Pos) and negative (Neg) datasets are constructed by considering both CTCF ChIP-seq peaks and targeted chromosome intervals, including

ChromHMM insulator-associated CBS (insulator CBS), cohesin ChIP-seq signal-associated CBS (cohesin CBS), and cohesin ChIA-PET loop-associated CBS

(loop CBS). A 1D-CNN model is then used to train a classifier for distinguishing positive CBSs (CTCF-mediated CREs) from other ones. The probability of CBSs

being insulator/cohesin/loop-associated can be calculated and used as the DeepAnchor score for downstream analyses. Related terminologies are as follows.

Insulator: an enhancer blocker or a barrier between heterochromatin and euchromatin. Chromatin loop: during the interphase of a cell, the condensed chromatin

forms a 3D structure within the cell nucleus. The basic loop-like structure is called a chromatin loop. Loop anchor: given a chromatin loop detected by ChIA-PET,

we call the endpoints of the loop on the chromosome a loop anchor. Insulator/cohesin/loop CBS: by using different targeted regions, we obtain different P/N

datasets and train different DeepAnchor models. CBS predicted by different models will be named by a particular targeted region.

(legend continued on next page)
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that often exceeds the processing capacity of classical machine-

learning algorithms. For example, 1,000-bp regions can incorpo-

rate 1,0003 48 = 48,000 features if the base-wise value is used.

Important patterns were extracted from the feature matrices by a

deep convolutional neural network (CNN) to overcome the chal-

lenge of addressing numerous features, which greatly reduced

the computational burden and increased prediction perfor-

mance. Training a classifier with positive and negative datasets

enabled the DeepAnchor framework to generate a probability

score that indicated the likelihood that a CBS region was a true

CTCF-mediated CRE. This score is referred to as the

DeepAnchor score in downstream analyses (Figure 1A, bottom;

see experimental procedures).

The DeepAnchor model used high-quality CTCF/RAD21 ChIP-

seq and RAD21 ChIA-PET data on the GM12878, K562, and H1-

hESC cell lines, and DeepAnchor repeatability was tested by

cross-validation (see experimental procedures). To minimize

the potential influence of chromosome-specific confounding

factors, the train-test-validation set was partitioned by dividing

the CBSs into subsets according to chromosome. The training,

validation, and test sets involved chr1–16, chr17–18, and the re-

maining chromosomes, respectively. Five-fold cross-validation

across the three cell lines determined that the DeepAnchor

models trained on different CBS sample types all had high areas

under the receiver-operating characteristic (ROC) curves (AUC =

0.94–0.99) (Figure 1B). The comparability of DeepAnchor

scores from different samples was demonstrated by cross-

cell-type validation across the three cell lines. Remarkably, the

DeepAnchor models demonstrated consistently high prediction

performance on all testing pairs across different CBS types (all

AUCs >0.9, Figure 1C), and the DeepAnchor scores were highly

correlated among the three cell-type-specific models (Pearson’s

r = 0.91–0.96) (Figure 1D). These results suggested that CTCF-

mediated CREs share conservative features in different contexts

and highlighted the feasibility of predicting genome-wide func-

tional CBS at the organism level.

We established a threshold to distinguish positive and nega-

tive CTCF-mediated CREs by identifying the optimal points on

the ROC curve with the maximum Youden’s J statistic. The

optimal threshold was obtained when the DeepAnchor score

was close to 0.5 for different models, where 86%–95% positive

and 85%–88% negative samples in the training datasets were

correctly assigned. The GM12878 DeepAnchor models and the

optimal cutoff enabled the generation of genome-wide positive

and negative CTCF-mediated CREs. The FANTOM5 enhancer

dataset revealed that the positive CBSs colocalized with more

enhancers within ± 100 kbp regions than the negative CBSs on

average (p < 2.22e�16, Mann-Whitney U test) (Figures 1E and
(B) Cross-validation ROC curves based on GM12878, K562, and H1-hESC datas

(C) Cross-sample ROC curves for DeepAnchor models on different cell types am

(D) Correlation between DeepAnchor scores for three cell-type-specific models

(E) Comparison of the number of enhancers around CBSs between predicted Pos

was used to test the significance.

(F) Strand-oriented asymmetric pattern of enhancer enrichment at predicted Pos

(G) Position and strand preference of TAD boundary enrichment by measuring the

and Neg CTCF-mediated CREs in loop CBS model.

(H) The intersection of the predicted CTCF-mediated CREs among three CBS ty

See also Figure S1 and Table S1.
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S1A). Moreover, counting the number of enhancers in every 10

kbp region within ± 100 kbp of CTCF-mediated CREs revealed

a strand-oriented asymmetric pattern only for positive CBSs,

particularly in loop CBSs and cohesin CBSs (Figures 1F and

S1B). Consistent with previous findings,43 the CTCF-mediated

CRE density around TAD boundaries exhibited strand bias,

whereby positive CBSs at the plus-strand were typically en-

riched at the left TAD boundary while those at the minus-strand

were aggregated at the right TAD boundary. Contrastingly, such

patterns were not observed for the negative CBSs (Figures 1G

and S1C). Furthermore, we examined the intersection of the pre-

dicted CTCF-mediated CREs (at different thresholds) among the

three CBS types. We determined that all loop CBSs and most

insulator CBSs were cohesin related, which indicated that cohe-

sin-boundCBSsmight have additional functions beyond forming

chromatin loops and insulation. Increasing the DeepAnchor cut-

off score significantly reduced the overlap between the three

CBS types, with only slight alterations in the overlap between

the insulator CBSs and cohesin CBSs (Figure 1H). Together,

these results demonstrated that the DeepAnchor model can

accurately capture high-confidence CTCF-mediated CREs

across the human genome.

DeepAnchor reveals distinct base-wise chromatin and
sequence features for CTCF-mediated CREs
Although DeepAnchor uses the deep-learning structure to

extract high-level configurations from large-scale features, it

also presents challenges in interpreting feature importance.

Base-wise representation of various genomic/epigenomic fea-

tures in the DeepAnchor model enabled the comprehensive

depiction of the CTCF-mediated CRE patterns. To visualize the

underlying relationships among these features, we first clustered

the feature scores of the training dataset and determined that

these features could be generally partitioned into three major

subsets: transcription-associated, conservation-associated,

and chromatin-state-associated (Figure S2). The DeepAnchor

output was clarified using SHapley Additive exPlanations

(SHAP),44 which is a game-theoretic approach. SHAP returns

the Shapley value matrix with the same alignment as the input

feature matrix, which depicts the contribution of each feature

at each position. To evaluate the overall contribution of each

feature, themean Shapley values at all positions were calculated

and summarized with the mean values (Figure 2A). Overall, the

feature of CTCF-binding evidence at open chromatin

(EncOCctcfPval) greatly contributed to the model. Furthermore,

G/T/A/C Shapley values are top-ranked, which implies the

importance of DNA sequence. As expected, open chromatin

features (e.g., EncOCFairePVal, EncOCC) displayed higher
ets, respectively, among three types of CBSs.

ong three types of CBSs.

among three types of CBSs.

and Neg CTCF-mediated CREs in loop CBS model. The Mann-Whitney U test

and Neg CTCF-mediated CREs in loop CBS model.

distance between each CBS and the 50 end of TAD it belongs at predicted Pos

pes at different thresholds.
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Figure 2. Base-wise analysis of sequence and chromatin patterns across different types of CTCF binding

(A) Feature importance analysis of top 20 features at a base-wise level among three types of CBSs. Heatmap: average absolute feature Shapley values of each

position at ± 500 bp of CBS. Bar plot: summation of absolute feature Shapley values across ± 500 bp of CBS.

(B) Base-wise Shapley value distribution for three representative features across different types of CBSs. EncOCctcfPval, p value (PHRED-scale) of CTCF

evidence for open chromatin; EncNucleo, maximum of ENCODE nucleosome position track score; GerpN, neutral evolution score defined by GERP++. Please

refer to more feature descriptions from Table S1.

(C) Comparison of DNA motifs associated with positive CBSs among three types of CBSs in this study and a commonly used conventional CBS.

See also Figures S2–S4.
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importance than other features (Figures 2A and S3). Interest-

ingly, nucleosome positioning evidence (EncNucleo) displayed

more contribution in the loop CBS model, which suggested

that the CTCF footprinting pattern among nucleosomes could

determine the CTCF-mediated chromatin loop formulation. A

conservation feature, the neutral evolution score defined by

GERP++ (GerpN), also demonstrated a weak preference in the

loop CBS model (Figure 2A). Taken together, the results sug-

gested that certain features might capture distinct and crucial

patterns that can differentiate CTCF-mediated CREs from other

types of CTCF-binding events.

To explore the base-wise schema of CTCF-mediated CREs,

we analyzed the distribution of Shapley values derived from the

DeepAnchor model for several important features at every po-

sition of the CBS and its surrounding region ( ± 500 bp) using

the testing dataset with randomly sampled CBSs. For example,

CTCF-binding intensity and its occupancy (EncOCctcfPval) dis-

played a periodic pattern at cohesin/loop CBSs instead of insu-

lator CBSs, in which higher binding intensity of the central CBS

heavily contributed to positive CBS discrimination but the

Shapley values inverted approximately 150 bp away from the

central CBS (Figure 2B, top). Interestingly, the Shapley values

of the nucleosome positioning signature (EncNucleo) were

reciprocally distributed only at loop CBSs (Figure 2B, middle),

and the nucleosome positioning level was inversely correlated

with its Shapley value (Figure S4A). These results suggested

that CTCF at loop anchor sites might be involved in expanding

and protecting the linked DNA between adjacent nucleosomes,

thereby facilitating loop formation. The base-wise visualization

of feature importance also strongly supported a previous report

which stated that CTCF binding anchors nucleosome posi-

tioning and leads to the presence of well-positioned nucleo-

some flanking sites at specific CBSs.45,46 Furthermore, we

determined that the Shapley values of the conservation feature

(GerpN) exhibited a distribution pattern similar to those of

CTCF-binding features, particularly in loop CBSs (Figure 2B,

bottom). Consistent with previous results,47 investigation of

base-wise Shapley value distribution in the positive or negative

training datasets revealed that CTCF-mediated CREs typically

demonstrated stronger binding intensity than other CBS types

(Figure S4B).

Previous CTCF multivalency studies revealed that CTCF

binds on diverse sequences through combinatorial clustering

of its 11 zinc fingers (ZFs),27,48 yet the sequence determinants

of CTCF-mediated insulation remain elusive. By applying

MEME motif discovery to all predicted positive and negative

CBSs, two additional weak motifs flanking the core CTCF motif

were revealed at only the positive loop and insulator CBSs

(Figure 2C). Agreeing with a sensitive insulator reporter

assay,28 ZFs 9–11 recognized the upstream motif 5 or 6 bp

away from the core sequence and might contribute to CTCF

CBS binding directionality.49 Interestingly, the distance and

sequence context of the downstream motif beside the core

sequence differed from that of previous findings.27 Nonethe-

less, this downstream sequence was associated with the

CTCF N terminus and ZFs 1–2 and stabilizes cohesin engage-

ment.50,51 Therefore, the distinct sequence features and multi-

ple lines of evidence for CTCF-binding patterns demonstrated

the fidelity of the DeepAnchor model.
6 Patterns 4, 100798, August 11, 2023
Incorporating the DeepAnchor score into LEM improves
the accuracy of CTCF-anchored loop prediction
Although DeepAnchor models the insulative and looping potential

of genome-wide CBSs at the organism level, it cannot be used to

explain chromatin loop formation, as the loop CBS model only

measures the single end of loops independently. We established

the relationship between loop formation and the features of both

CTCF-mediated anchors to apply the DeepAnchor score to

CTCF-anchored loop prediction. A simple but effective model,

LEM, has beendescribed previously, inwhich the chromatin loops

profiled in CTCF ChIA-PET experiments were clarified as cohesin

blocking and localized at CBSs.40 This quantitative model evalu-

ates CTCF-anchored loop formation with only four features:

CTCF-binding intensity, CTCFmotif orientation, distancebetween

CTCF-binding events, and loop competition. Notwithstanding the

acquired specificity, we reasoned that incorporating the loop-

associated DeepAnchor score into the LEM could improve

CTCF-anchored loop prediction. To this end, we weighted the

probability of CTCF binding in the original LEM by considering

the looping potential of CTCF binding (the anchor score predicted

by the loop-associated DeepAnchor model) and achieved a new

implementation, LoopAnchor (see experimental procedures).

The performance of LoopAnchor was compared with that of

five prevalent algorithms for CTCF-mediated interaction predic-

tion: the Naive and Oti methods,37 CTCF-MP,35 Lollipop,32 and

LEM.40 To ensure fair benchmarking, all supervised models were

trained on GM12878 RAD21 ChIA-PET data and tested on K562

RAD21 ChIA-PET data. The LoopAnchor ROC-AUC (0.936) and

PR-AUC (0.921) both suggested that it outperformed the other

state-of-the-art methods (Figure 3A), which indicated the effec-

tiveness of our model optimization. The correlation analysis be-

tween the predicted loop intensities and the observed ChIA-PET

signals on K562 demonstrated that LoopAnchor achieved the

highest correlation (Pearson’s r = 0.653) among the six tools (Fig-

ure 3B), which also demonstrated the superiority of LoopAnchor

for the quantitative measurement of CTCF-anchored loops.

We investigated whether our LoopAnchor model could capture

the dynamic changes during cell development by applying it

to human monocyte activation data with the paired in situ Hi-C

and CTCF ChIP-seq data before and after exposure to phorbol

12-myristate 13-acetate.52 The LoopAnchor model accurately

predicted 25 of 34 gained loops, and all six lost CTCF-anchored

loops (Figure 3C). For example, Hi-C detected eight loops on the

JAG1 locus at chromosome 20:9547732-11575097 (GRCh37/

hg19), among which one gained loop was identified only at

differentiated macrophages (Figure 3D). Consistent with this,

LoopAnchor not only detected all unchanged loops but also accu-

rately predicted the gained loop (Figure 3D; see experimental

procedures).Notably, the loop intensitydifferences in thisgenomic

region predicted by LoopAnchor betweenmonocytes andmacro-

phages were highly correlated with the loop score changes

measured from the Hi-C data (Pearson’s r = 0.796). These results

indicate that LoopAnchor could quantitatively capture local loop

structure changes during the dynamic cellular process.

A landscape of CTCF-anchored loops across 52 human
tissue/cell types
Given the simplicityand improvedperformanceof theLoopAnchor

model,weusedexisting large-scaleCTCFChIP-seqdata toderive
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Figure 3. Performance evaluation of LoopAnchor for CTCF-

anchored loop prediction

(A) ROC curves, precision-recall curves, and associated AUCs among

LoopAnchor and five state-of-the-art methods. All supervised models, such as

LoopAnchor, LEM, Lollipop, and CTCF-MP, were trained on GM12878 RAD21

ChIA-PET data and independently tested on K562 RAD21 ChIA-PET data.

(B) Correlation between predicted scores and real RAD21 ChIA-PET loop in-

tensity on K562.

(C) Gained and lost loops from monocyte to macrophage differentiation by

comparing LoopAnchor prediction with Hi-C observation. log10(Fold change)

is the transformed fold change of predicted loop intensity for a specific loop

betweenmacrophage andmonocyte; log10(Monocyte) is the transformed Hi-C

loop score observed in monocyte; blue dot is lost Hi-C loop; orange dot is

gained Hi-C loop.

(D) Example of loops predicted by LoopAnchor at JAG1 locus. For Hi-C loops,

line color is used to distinguish the gained and static loops. For LoopAnchor,

line width represents the predicted loop intensity, and the loop with a fold

change of intensity >3 is marked in red.
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a global picture of CTCF-mediated chromatin interactions across

various human tissue/cell types. Initially, we uniformly processed

740 CTCF ChIP-seq datasets collected from ENCODE,2

CistromDB,53 and ChIP-Atlas54 utilizing the ENCODE TF ChIP-
seq processing pipeline (Table S2; see experimental procedures).

Our data quality control, peak calling filtering, and redundancy

removal process retrieved a dataset containing 168 high-quality

CTCFChIP-seqdata related to113normal and55 cancer samples

spanning 32 tissues and 20 anatomical cell types (Figure 4A and

Table S3; see experimental procedures). Each biosample con-

tained approximately 100,000 peaks (mean = 104,691, median =

96,296, Figure S5A). Genome-wide CTCF-mediated loops for

each biosample were detected with LoopAnchor and LEM, which

yielded approximately 20,000 loops per biosample (LoopAnchor

mean = 16,255, median = 16,637; LEM mean = 17,826, median =

18,252; Figures S5B and S5C).

Based on the shared pattern of detected loops across 168 bio-

samples, the LoopAnchor loops were classified into four distinct

types: (1) 8.2% (n = 6,179) tissue/cell-type-shared loops in >75%

of the biosamples; (2) 9.0% (n = 6,802) tissue/cell-type-relatively-

shared loops in >50% but <75% of the biosamples; (3) 13.3%

(n = 10,016) tissue/cell-type-relatively-specific loops in >25% but

<50% of the biosamples; (4) 69.4% (n = 52,216) tissue/cell-type-

specific loops in <25% of the biosamples (Figure 4B; see experi-

mental procedures). The LEM loopswere also classified into these

four types based on the same strategy (Figure S6A). Compared to

LEM, LoopAnchor detectedmore shared loops but fewer specific

loops globally (tissue/cell-type-shared loops: 8.2% vs. 3.9%; tis-

sue/cell-type-specific loops: 69.4% vs. 80.3%; Figures 4B and

S6A). This suggested that LoopAnchor was more effective for

capturing conservative CTCF-anchored loops across different tis-

sue/cell types. Investigation of the LoopAnchor-predicted loop in-

tensity score distribution revealed a significant difference among

the four loop categories (p < 2.22e�16, Kruskal-Wallis test, Fig-

ure4C),where the tissue/cell-type-shared loops received thehigh-

est scores while the tissue/cell-type-specific loops received the

lowest scores. A similar patternwas observed for the LEM-derived

loop intensity score (p < 2.22e�16, Kruskal-Wallis test, Fig-

ure S6B). To evaluate the tissue/cell-type specificity of the classi-

fied CTCF-mediated loops, we used the predicted chromatin

loops based on Peakachu for 42 human tissue/cell types55 and

compared the number of associated tissue/cell types among

different categories, whereby the tissue/cell-type distribution of

the LoopAnchor-predicted loops also demonstrated significant

differences among the four loop categories (p < 2.22e�16,

Kruskal-Wallis test, Figure 4D). As expected, the number of asso-

ciated tissue/cell types gradually decreased from the tissue/cell-

type-shared group (mean = 4, median = 4.743) to the tissue/cell-

type-specific group (mean = 2, median = 2.314), which indicated

the effectiveness of our loop classification. A similar trend was

identified for the LEM-detected loops (p < 2.22e�16, Kruskal-

Wallis test, Figure S6C).

In summary, we established a comprehensive collection of

CTCF-anchored loops that exhibit both commonalities and spec-

ificities across a wide range of human tissue/cell types. All pre-

dicted loops for the 168 selected biosamples and all 764 bio-

samples can be visualized as separated tracks at UCSC Track

Data Hubs (https://genome.ucsc.edu/cgi-bin/hgHubConnect)

by entering the customized hub URLs (https://raw.githubuser

content.com/mulinlab/LoopAnchor/master/loopanchor/data/hubs/

hubs_landscape.txt and https://raw.githubusercontent.com/

mulinlab/LoopAnchor/master/loopanchor/data/hubs/hubs_all.txt,

respectively).
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Figure 4. Landscape of predicted CTCF-anchored loops across 32 human tissues and 20 cell types

(A) Overview of predicted CTCF-anchored loops across 168 biosamples (columns) and biological conditions (rows).

(B) Classification of CTCF-anchored loops according to their shared patterns. All predicted loops were classified into four categories, namely tissue/cell-type-

specific, tissue/cell-type-relatively-specific, tissue/cell-type-relatively-shared, and tissue/cell-type-shared.

(C) Comparison of loop intensity score for loops in four categories. The cumulative probability was calculated, and the Kruskal-Wallis test was used to test the

significance.

(D) Validation of tissue distribution for loops across four categories using predicted chromatin loops based on Peakachu for 42 human tissue/cell types. The

cumulative probability was calculated, and the Kruskal-Wallis test was used to test the significance.

See also Figures S5 and S6; Tables S2 and S3.
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Tissue/cell-type-specific loop anchors are highly
enriched at disease-causal loci
Numerous lines of evidence supported the premise that

CTCF/cohesin-binding sites are highly mutated in cancer56–58

or are constantly shaped via evolutionary selection.59,60 How-

ever, whether context-specific CTCF-mediated looping and

associated loop anchors are more likely linked to disease-

causal genomic loci has not been systematically tested. We

collected 12,738 causal variants for 54 blood-related autoim-

mune diseases from genome-wide association studies

(GWASs)61 (Table S4) and sampled-matched control variants

to evaluate the genome-wide enrichment of autoimmune dis-

ease-causal variants on the LoopAnchor-predicted CTCF-

anchored loops in normal tissues with at least three bio-

samples (see experimental procedures). Notably, based on

the scores measured by the permutation tests’ p values,

blood tissue (mean p = 0.0036) was ranked the top tissue

for autoimmune disease variant enrichment in the loop an-
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chors (Figure 5A). Additionally, the score distribution compar-

ison revealed that blood tissue was significantly more en-

riched than 50% of the other tissues (6 of 13, one-tailed

Mann-Whitney U test, false discovery rate [FDR] < 0.1, Fig-

ure 5A). As most disease-causal regulatory variants exhibit tis-

sue/cell type specificity in phenotypically relevant contexts,

these results supported the idea that context-dependent

loop information can better interpret GWAS disease-causal

variants for complex diseases.

The relevance of CTCF-mediated loop anchors in cancer

mutation was assessed by obtaining somatic mutations from

the International Cancer Genome Consortium (ICGC) whole-

genome mutation aggregation62 and extracting recurrent

mutations in the non-coding regions (see experimental pro-

cedures). Comparison with permuted non-recurrent mutations

revealed that higher-recurrence mutations obtained greater

enrichment in the CTCF-mediated loop anchors in cancer

biosamples (two-tailed Mann-Whitney U test, Figure 5B).
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Figure 5. Disease-causal variants and somatic hotspots enrichment

(A) Enrichment significance distribution for autoimmune disease-causal variants among different normal tissues. The tissues were ordered by their average

p values. The one-tailed Mann-Whitney U test (FDR < 0.1) revealed that the blood tissue was significantly more enriched than the tissues highlighted in bold.

(B) Comparison of fold change distribution among different somatic mutation recurrence categories. The two-tailed Mann-Whitney U test was used to test the

significance.

(C–E) Comparison of overlapped percentage with somatic hotspots using different datasets from ATACseq-AWG (C), PCAWG (D), and CNCDriver (E). The paired

two-tailed Mann-Whitney U test was used to test the significance.

See also Table S4.
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Whole-genome cancer mutation hotspots collected from three

pan-cancer whole-genome analyses—assay for transposase-

accessible chromatin using sequencing analysis working

group (ATAC-seq-AWG),63 Pan-Cancer Analysis of Whole Ge-

nomes (PCAWG),64 and CNCDriver65—were used to examine

whether the cancer mutation hotspots occurred more

frequently in CTCF-mediated loop anchors than in other

CTCF-binding loci or shuffled non-coding genomic regions

(see experimental procedures). We obtained consistent re-

sults from the different datasets, where the loop anchors

were highly enriched with cancer mutation hotspots (two-

tailed Mann-Whitney U test, Figures 5C–5F). These findings

suggested that CTCF-anchored loop disruption in the human

genome might be a common causal mechanism underlying

disease pathogenesis.
DISCUSSION

Themultifaceted roles of CTCF in the nucleusmotivated ongoing

investigations into its phenotypic and mechanistic functions.

However, the precise mechanism by which CTCF recognizes

and interacts with insulators to exert its effects on chromosome

barriers and enhancer blocking require further examination.

In this study, we developed a novel computational model to

accurately predict genome-wide CTCF-mediated CREs. The

incorporation of large-scale base-wise genomic and epigenomic

features within a deep-learning model revealed several high-res-

olution distinct chromatin and sequence features of CTCF-medi-

ated insulation. Importantly, two additional sequence motifs

flanking the core CTCF motif at the positive loop and insulator-

associated CBSs were identified. Subsequently, the predicted
Patterns 4, 100798, August 11, 2023 9
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insulator score was used to optimize the previous LEM and

achieved better performance in CTCF-anchored loop prediction.

Based on the model, we established a novel compendium of tis-

sue/cell-type-specific and -shared CTCF-anchored loops

across 52 human tissue/cell types. Finally, we demonstrated

that tissue/cell-type-specific loop anchors are highly enriched

at disease-causal loci. Therefore, our results enhance under-

standing of CTCF-mediated insulation and loop formation.

Together with the compiled resource, the new method provides

useful approaches for studying the dynamic regulation of 3D

chromatin during cell differentiation and disease progression.

Although many computational models can predict CTCF-

mediated loops with varied sensitivity and specificity,31–40,66

they typically learn from CTCF ChIA-PET data and rarely eval-

uate the regulatory potential and loop attributes among different

CBS types. Here, we applied cohesin ChIA-PET/ChIP-seq data,

ChromHMM-predicted insulator, and strict CTCF-binding evi-

dence to specifically analyze the CTCF-binding patterns at three

types of CTCF-mediated CREs. This yielded a unique tool for

characterizing CTCF-binding consequence and loop formation

through the loop extrusion mechanism. Notably, the limited

availability and varied library construction quality of CTCF/cohe-

sin ChIA-PET restricted the broad training of context-specific

models. However, our cross-cell-type comparisons demon-

strated high agreement among the DeepAnchor models trained

with different ChIA-PET data, which indicated that the discrimi-

nation of true CTCF-mediated CREs might rely on several con-

servative features revealed by our interpretable deep-learning

model, such as higher binding intensity, well-positioned nucleo-

somes, and two unique motifs flanking the central CBS.

The introduction of the DeepAnchor score into LEM40

improved CTCF-anchored loop prediction performance and

demonstrated that the new LoopAnchor method could achieve

better quantitative estimation. However, the quantitative predic-

tions in both LEM and LoopAnchor only measured the contribu-

tion of each component independently. For example, the insula-

tion potential of CBS and loop competition are dependent

processes based on the dynamic chromatin context,67 which

motivates our future optimization direction. Given that all existing

methods do not yield CTCF-associated anchor prediction re-

sults, we could not evaluate whether incorporating other anchor

scores would achieve better performance. Instead, we per-

formed systematic comparisons with five prevalent algorithms

for CTCF-mediated loop prediction. While our method was

limited to inferring specific CTCF-bound CREs and loops,

recent studies indicated that some TFs could function as novel

architectural proteins to regulate genome organization,68 such

as YY1,69 ZNF143,70 MAZ,71 BHLHE40,72 CTCFL,73 MyoD,74

and ZBTB3.,75 some of which are independent of CTCF binding.

Based on the targeted regions and negative controls, our model

can easily be extended to train classifiers to extract the base-

wise features of the binding patterns of these architectural pro-

teins. Therefore, predicting genome-wide full-spectrum anchor

sites and their associated looping events warrants further in-

depth investigations.

The CTCF-anchored loop landscape established by applying

LoopAnchor to 168 uniformly processed human CTCF ChIP-

seq biosamples is a valuable resource for 3D genome and regu-

latory genomics studies. As the anchor scores were estimated at
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the organism level, LoopAnchor only requires CTCF-binding pro-

files to accurately predict CTCF-anchored loops. This would

greatly simplify the application, particularly for studying the dy-

namic 3D CTCF code during cell development and disease pro-

gression. Additionally, the compiled tissue/cell-type-shared and

-specific loops can facilitate the interpretation of disease-causal

variants identified by GWASs and somatic non-coding driver

mutations in cancers.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Mulin Jun Li (mulinli@

connect.hku.hk).

Materials availability

This study did not generate new unique materials.

Data and code availability

The source codes of LoopAnchor are freely available under MIT License at

https://github.com/mulinlab/LoopAnchor76 or https://bitbucket.org/xuhang01/

loopanchor. The source code has also been released with v.1.0.0 as the version

of the repository at publication time.

All predicted loops for 168 selected biosamples and all 764 biosamples

can be visualized and compared as separated tracks at UCSC Track

Data Hubs (https://genome.ucsc.edu/cgi-bin/hgHubConnect) by entering

customized hub URLs https://raw.githubusercontent.com/mulinlab/Loop

Anchor/master/loopanchor/data/hubs/hubs_landscape.txt or https://raw.

githubusercontent.com/mulinlab/LoopAnchor/master/loopanchor/data/hubs/

hubs_all.txt, respectively.

Training dataset preparation

Three types of target regions were prepared from high-quality functional geno-

mics data of three Tier 1 ENCODE cell lines (GM12878, K562, and H1-hESC),

including insulators estimated by ChromHMM77 (https://genome.ucsc.edu/

cgi-bin/hgTrackUi?db=hg19&g=wgEncodeBroadHmm), cohesin (RAD21)

ChIP-seq narrow peaks (CohesinDB: https://cohesindb.iqb.u-tokyo.ac.jp/

download/downAllObject/allcohesin.final.tsv.gz), and cohesin (RAD21) ChIA-

PET loops (ENCODE: ENCSR752QCX, ENCSR000CAC, ENCSR543YTV).78

For ChromHMM insulator segments and RAD21 ChIP-seq narrow peaks, the

intervals were merged to avoid overlap. RAD21 ChIA-PET data were prepro-

cessed with ChIA-PET2 using default parameters.79 To increase specificity, in-

ter-chromosomal interactions and intra-chromosomal interactions with less

than two pair-end tags were excluded. The anchors of loops were extracted

and merged to obtain non-redundant anchors. Three types of CBSs were

then prepared by intersecting the target intervals with candidate CBSs identi-

fied by motif scanning as well as CTCF ChIP-seq narrow peaks (ENCODE:

ENCSR000AKB, ENCSR000BPJ, ENCSR000BNH), including insulator CBS,

cohesin CBS, and loop CBS. Thus, for each cell type, the candidate CBSs co-

localized with both CTCF ChIP-seq peaks and targeted regions were selected

as positive sets while all others constituted the negative pool. To avoid biases,

the CBSs that shared the same target region from the positive sets were

removed because it was difficult to distinguish which onewas the true positive.

Feature preparation

The DNA-binding motif of CTCF (MA0139.1) was downloaded from JAS-

PAR2020.80 We used FIMO, a tool from the MEME Suite (v5.1.1),81 to scan

the CTCF-binding motif across the whole human genome (GRCh37/hg19),

which generated 110,059 CBSs with p value <1e�5. According to the topic

relevance, we selected 44 base-wise genomic/epigenomic features from

the CADD (v1.4) annotation database (https://cadd.gs.washington.edu/static/

ReleaseNotes_CADD_v1.4.pdf).42,82 For each CBS, the feature values

within ±500 bp region were extracted and stored together to form a featurema-

trix. All features were then scaled using the min-max scaling algorithm. The 0.1

and 99.9 percentileswere used as theminimumandmaximumvalues to reduce

the influence of extreme high/low values. In addition, the DNA sequence of
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the ±500 bp region surrounding the CBS center was obtained using BED-

Tools.83 A, T, C, and G were converted into numerical values using one-hot

encoding: A (1,0,0,0), T (0,1,0,0), C (0,0,0,1), and G (0,0,1,0). Finally, by concat-

enating the large-scale annotations with converted DNA features at the base-

wise level, a 1,000 3 48 feature matrix was generated for each CBS.

DeepAnchor model and fitting

For each CBS n = 1; .; N, genomic/epigenomic features and DNA

sequence features at base-wise level for the ± 500 bp regions surrounding

the CBS center were extracted. By concatenating features and one-hot en-

coding sequence, a two-dimensional 1,000 3 48 signal matrix xn is gener-

ated for each CBS n. To extract feature patterns from the signal matrix,

DeepAnchor uses 1D convolutional kernels to process the signal matrix.

For each layer l, the forward propagation from layer l � 1 to l is expressed

as follows:

xlk = bl
k +

XNl�1

i = 1

conv1D
�
wl

ik ; x
l� 1
i

�
; (Equation 1)

where Nl is the number of neurons at layer l, xl� 1
i and xlk are the ith neuron at

layer l � 1 and kth neuron at layer l, andwl
ik and bl

k are the kernel and the scalar

bias from layer l � 1 to layer l. DeepAnchor implements two 1D-CNN layers,

each followed by a max-pooling layer and a drop-out layer. After 1D-CNN

layers, all the outputs are fully connected. Three fully connected layers convert

the outputs of 1D-CNN layers to lower dimensions and finally train a classifier

with sigmoid activation,

p1 =
exf

1

exf
1 + exf

0

;

p0 = 1 � p1;

where xf is the result of fully connected layers which contain only two ele-

ments for positive training and negative target, respectively. p1 is the prob-

ability that CBS n can be a positive CBS. The DeepAnchor model was imple-

mented using the TensorFlow framework. To avoid overfitting, a balanced

negative set was extracted by randomly selecting equal number of samples

from the negative set pool. Finally, the positive and negative datasets were

divided into train, test, and valid sets according to chromosomes. Samples

on chr1–16 were selected as the training set, chr17–18 as the validation

set, and the others as the test set. We considered p1 and p2 as the possibility

that a CBS is a true target-associated CBS or not, and the binary cross en-

tropy was calculated as the loss of model. The input data were split into

small batches with a batch size of 50, and the model was trained for 20

epochs. Early stopping was implemented to stop training if the validation

loss no longer decreased.

Evaluation of the DeepAnchor model

Five-fold cross-validation was used to evaluate the DeepAnchor model to

generate ROC curves and corresponding AUCs. To define positive and nega-

tive CBSs, a cutoff was set by finding the points on the ROC curve with the

largest Youden’s J statistic. As with the training procedure on GM12878,

DeepAnchor models were trained for each cell type, and the models were

also validated by all test sets belonging to three cell types. After training the

model, DeepAnchor computed a score within [0, 1] for all potential CBSs,

where larger value indicates a higher possibility for a CBS to be CTCF-medi-

ated CREs. According to Youden’s J statistic, CBSs with anchor scores

>0.5 were selected as positive CTCF-mediated CREs, while negative CTCF-

mediated CREs have anchor scores <0.5. Human enhancer annotation was

downloaded from the FANTOM5 database84 (https://fantom.gsc.riken.jp/5/

datafiles/latest/extra/Enhancers/). The number of enhancers for positive/

negative insulators was counted if the distance between them was smaller

than 100 kbp. We evaluated the differences of involved enhancers between

positive and negative CBSs using the Mann-Whitney U test. The estimated

TAD data were derived from the GM12878 Hi-C assay,17 in which there are

4,386 TADs and the median length of TADs is 520 kbp. To evaluate whether

CBSs have a positional preference or not, we counted the distance between

eachCBS and the 50 end of TAD that contains theCBS. Because of the variable
length of TAD, the distance of CBS was scaled by the length of TAD it be-

longs to.

Base-wise feature contribution analyses

SHAP44 was used to interpret the output of DeepAnchor. Since the input of the

DeepAnchor model is a 1,000 3 48 feature matrix, SHAP returns the Shapley

value matrix with the same alignment as the input feature matrix. The shap

package85 was used to analyze the well-trained DeepAnchor model and use

the training dataset as background examples to receive an expectation. An

explainer was then generated based on the model and background dataset.

The explainer calculated the Shapley values for every position via testing data-

sets. The training and test dataset was the same as the ones used for training

the DeepAnchor model. The feature contribution was interpreted by the mean

Shapley values for all positions.

Algorithm of LoopAnchor

The DeepAnchor score reflects the phenomenon that CBSs do not have equal

functionality in biological processes such as the formation of chromatin loops.

However, in previously described algorithms for predicting CTCF-mediated

chromatin loops none of them addressed such inequality, although they

have used specific features. They also failed to make use of base-wise

genomic or epigenomic features. Therefore, it is possible to improve the per-

formance by incorporating the DeepAnchor score in CTCF-anchored loop pre-

dictions. Enlightened by a recent published model, LEM,40 we integrated the

loop-associated DeepAnchor score into the model to predict CTCF-anchored

loops. The probability of insulator-associated CTCF binding at CBS iwas esti-

mated as

pi =
Si$ti

Si$ti + a$Fre

;

where Si is the CTCF ChIP-seq signal and a is a constant that has been

estimated in the original paper. In this new implementation, ti is the loop-asso-

ciated DeepAnchor score at CBS i; thus, revised mean CTCF signal Fre is

given by

Fre =

Pn
i Si$ti
n

:

Comparison with state-of-the-art methods for CTCF-mediated loop

prediction

Oti code was obtained from Oti et al.,37 and the Naive method code was

derived from Oti code by setting the recursive round to 1. Default parameters

were used to run Oti and Naive methods, and loops with a score >0 were

considered positive loops while others were treated as negative. CTCF-

MP,35 Lollipop,32 and LEM40 were installed and used on relevant cell types ac-

cording to their GitHub repositories. To facilitate comparison among different

methods, all methods were trained on the GM12878 cell line and tested on the

K562 cell line. Balanced (Pos/Neg = 1) and unbalanced (Pos/Neg = 1/5) gold

datasets were prepared, respectively. ROC curve, PR curve, and correspond-

ing AUC were then plotted and calculated. The Pearson correlation between

predicted loop intensity with real data was also calculated to show the perfor-

mance of all methods.

Application of LoopAnchor for dynamic loop detection during

macrophage development

CTCF ChIP-seq data were downloaded for both monocyte and macrophage

cells52 (GEO: GSE96800). CTCF ChIP-seq data with replication were pro-

cessed with ENCODE standard pipeline to retrieve bigWig and peak files.

LoopAnchor was used to predict CTCF-anchored loops with peak files for

both cell states. The cell-state-specific loops based on Hi-C loops detected

by HiCCUPS86 (GEO: GSE63525) was also downloaded. Because Hi-C loops

do not need to be mediated by CTCF and cohesin, loops without CTCF peaks

in anchor regions on both sides were filtered out. We mainly focused on the

‘‘gained’’ and ‘‘lost’’ loops from monocyte to macrophage cells by comparing

the predicted loop intensity L of the same loop between the two cell states. The

fold change of loop intensity for a specific loop between macrophage and
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monocyte is defined as Lmacro=Lmono and thresholding at jLmacro=Lmonoj > 3 for

‘‘gained’’ and ‘‘lost’’ loops.

Landscape construction of CTCF-anchored loops across human

tissue/cell types

We performed a systematic collection of CTCF ChIP-seq datasets from

ENCODE,2 CistromDB,53 and ChIP-Atlas,54 and uniformly processed them us-

ing the ENCODE TF ChIP-seq processing pipeline (https://github.com/

ENCODE-DCC/chip-seq-pipeline2). In brief, the clean reads were mapped

to the human genome (GRCh37/hg19) with BWA (v0.7.17)87 followed by the

post-alignment filtering. Finally, the peaks were called using SPP (v1.15).88

To select the high-quality ChIP-seq biosamples, we first filtered out any out-

liers with excessively low or high peaks. All B lymphocyte biosamples prefixed

with ‘‘GM’’ were then excluded except for GM12878. For each mapped tissue

or anatomical cell type, redundant biosamples were removed according to the

Jaccard similarity clustering of called peaks, selecting only one biosample in

each cluster with the maximal number of peaks. Finally, LoopAnchor and

LEM were applied to detect genome-wide CTCF-mediated loops for each

biosample.

Definition of tissue/cell-type-shared and -specific loops

All predicted CTCF-anchored loops were classified into four categories based

on their shared patterns across different tissue/cell types. Specifically, loops

that were shared by no less than 75% of tissue/cell types were classified as

tissue/cell-type-shared loops. Loops that were shared by no less than 50%

but less than 75% of tissue/cell types were classified as tissue/cell-type-rela-

tively-shared loops. Loops that were shared by no less than 25% but less

than 50% of tissue/cell types were classified as tissue/cell-type-relatively-

specific loops. The remaining loops which were shared by less than 25% of

tissue/cell types were classified as tissue/cell-type-specific loops. The public

Hi-C loops detected by Peakachu55 for 42 tissue/cell types were obtained

from the 3D genome browser89 (http://3dgenome.fsm.northwestern.edu/

publications.html). The ‘‘pairtopair’’ command from BEDTools83 with the

parameter ‘‘-type both’’ was then used to compare them with loops predicted

by LoopAnchor. The Kruskal-Wallis test, the non-parametric substitute for

ANOVA, was employed to compare the distribution of loop intensity scores

and the number of tissues across the four categories.

GWAS disease-causal variant enrichment

We collected 12,738 causal variants for 54 blood-related autoimmune dis-

eases from CAUSALdb.61 To evaluate the genome-wide enrichment of auto-

immune disease-causal variants on the CTCF-anchored loops predicted by

LoopAnchor, we first randomly sampled the same number of control variants

(10,000 times) with matched allele frequency using vSampler.90 For each

normal biosample, the predicted CTCF-anchored loops were flattened into

unique anchors, and the ‘‘intersect’’ command from BEDTools83 was used

to examine the colocalization between variants and anchors. The enrichment

p value was determined by computing the number of permutations in which

the percentage of overlapping variants was higher than that of the real dataset

for each biosample. This analysis was only conducted on normal tissues that

had more than three biosamples. Here we treated the permutation test p

values as ‘‘scores’’ and compared them across tissue groups. Pairwise com-

parisons between the blood tissue group and non-blood tissue groups were

conducted using the one-tailed Mann-Whitney U test. Multiple test correction

was applied to calculate the FDR using the Benjamini-Hochberg method.

Non-coding somatic mutation and hotspot enrichment

The genome-wide somatic mutations were downloaded from the ICGC Data

Portal (release 28).62 Candidate non-coding somatic mutations were retained

by removing those overlapping with exons and splicing sites and were classi-

fied into three categories based on their mutation recurrence (˛ [2,5), ˛ [5,10),

R10). The somatic mutations with only one recurrence were used as back-

ground for generating control datasets. We created 10,000 control datasets

by randomly sampling the equivalent mutations for each category. For each

cancer biosample, the predicted CTCF-anchored loops were flattened into

unique anchors, and the number of intersecting hits between somatic muta-

tions in each category and anchors in a particular biosample was calculated.

By comparing it with the average count value from the control datasets, the
12 Patterns 4, 100798, August 11, 2023
fold change of overlapping mutation percentage was derived. The Mann-

Whitney U test was used to compare the difference in fold changes among

the three categories for each pair. In addition, candidate somatic mutation hot-

spots or driver regions were curated from three previous catalogs, including

ATACseq-AWG,63 PCAWG,64 and CNCDriver.65 For each cancer biosample,

the loops predicted by LoopAnchor with a scoreR0.01 were retained and flat-

tened to unique anchors as the ‘‘Anchor’’ datasets, while the same number of

non-anchor regions were sampled from remaining loops with the smaller pre-

dicted scores as ‘‘Control’’ datasets. By excluding real hotspots and restricting

them to non-coding genomic regions, the ‘‘shuffle’’ command from

BEDTools83 was also used to retrieve shuffled hotspots with 100 permutations

as ‘‘Shuffled’’ datasets. The Mann-Whitney U test was used to compare the

difference in the overlapped percentage of somatic hotspots among these

generated datasets in pairwise manner.
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 Supplementary Figures 

Supplementary Figure S1. Evaluations of positive and negative CTCF-mediated 

CREs predicted by different types of DeepAnchor CBS models on enhancer and 

TAD relevance, related to Figure 1.  

A. Comparison of number of enhancers around CBSs between predicted Pos and Neg 

CTCF-mediated CREs among three types of DeepAnchor CBS models. The 

Mann-Whitney U test was used to test the significance.  

B. Strand-oriented asymmetric pattern of enhancer enrichment at predicted Pos and 

Neg CTCF-mediated CREs among three types of DeepAnchor CBS models.  

C. Position and strand preference of TAD boundary enrichment by measuring the 

distance between each CBS and the 5’ end of TAD it belongs at predicted Pos and 

Neg CTCF-mediated CREs among three types of DeepAnchor CBS models. 

  



 

 

Supplementary Figure S2. Hierarchical clustering of 44 genomic/epigenomic 

features on training dataset, related to Figure 2. 

  



 

Supplementary Figure S3. Feature importance analysis of all used features at 

base-wise level among three types of CBSs, related to Figure 2.  

Heatmap: Average absolute feature Shapley values of each position at ±500 bp of 

CBS.  

Bar plot: Summation of absolute feature Shapley values across ±500 bp of CBS. 

  



Supplementary Figure S4. Base-wise analysis of feature contributions for loop 

CBS model in different angles, related to Figure 2.  

A. Base-wise anti-correlated pattern between nucleosome positioning level and 

Shapley value. 

B. Base-wise Shapley value distribution for three representative features, Up: positive 

loop CBSs, Down: Negative loop CBSs. 

  



 

Supplementary Figure S5. The number distribution of CTCF ChIP-seq peaks 

from different biosamples (A), and loops predicted by LoopAnchor (B) and LEM 

(C) methods, related to Figure 4. 

  



 

Supplementary Figure S6. Predicted CTCF-anchored loops across 32 human 

tissues and 20 cell types using LEM, related to Figure 4.  

A. Classification of CTCF-anchored loops according to their shared patterns. All 

predicted loops were classified into four categories, including tissue/cell type-specific, 

tissue/cell type-relatively specific, tissue/cell type-relatively shared, and tissue/cell 

type-shared.  

B. Comparison of loop intensity score for loops in four categories. The cumulative 

probability was calculated and the Kruskal-Wallis test was used to test the 

significance.  

C. Validation of tissue distribution for loops across four categories using predicted 

chromatin loops by Peakachu for 42 human tissue/cell types. The cumulative 

probability was calculated and the Kruskal-Wallis test was used to test the 

significance. 
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