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SUMMARY

Context-specific activities of transcription regulators (TRs) in the nucleus modu-
late spatiotemporal gene expression precisely. Using the largest ChIP-seq data
and chromatin loops in the human K562 cell line, we initially interrogated TR
cooperation in 3D chromatin via a graphical model and revealed many known
and novel TRs manipulating context-specific pathways. To explore TR coopera-
tion across broad tissue/cell types, we systematically leveraged large-scale
open chromatin profiles, computational footprinting, and high-resolution chro-
matin interactions to investigate tissue/cell type-specific TR cooperation.We first
delineated a landscape of TR cooperation across 40 human tissue/cell types.
Network modularity analyses uncovered the commonality and specificity of TR
cooperation in different conditions. We also demonstrated that TR cooperation
information can better interpret the disease-causal variants identified by
genome-wide association studies and recapitulate cell states during neural devel-
opment. Our study characterizes shared and unique patterns of TR cooperation
associated with the cell type specificity of gene regulation in 3D chromatin.

INTRODUCTION

A critical problem in functional genomics has long been the identification of spatiotemporal patterns of

gene regulation in different biological conditions. Only tens of thousands of genes have been found in

mammalian genomes, whereas over millions of cis-regulatory elements (CREs), such as promoters, en-

hancers, silencers, and insulators, regulate gene transcription precisely and control cell functions faithfully

(Consortium, 2012; Consortium et al., 2020a). Such a great volume of discovered CREs, together with thou-

sands of transcription regulators (TRs), which include transcription factors (TFs) and chromatin regulators,

underpin the basal and tissue/cell type-specific transcription events in the nucleus. However, when and

how these elements and TRs cooperatively regulate gene expression and cellular function remain largely

unknown (Kazemian et al., 2013; Maston et al., 2006; Spitz and Furlong, 2012; Voss and Hager, 2014). Be-

sides, the action of TRs usually depends on three-dimensional (3D) chromatin folding to modulate gene

expression precisely and in turn shape context-specific genome organization (Kim and Shendure, 2019;

Stadhouders et al., 2019). Therefore, accurate detection of cell type-specific TR cooperation in 3D chro-

matin would enhance the understanding of the complex gene regulation in cell differentiation and disease

development (Petrovic et al., 2019; Tian et al., 2020).

Many genomic and epigenomic approaches for identifying cis-regulatory modules and the associated pro-

tein complexes in the one-dimensional (1D) genome space have been well documented (Gerstein et al.,

2012; Guo and Gifford, 2017; Hardison and Taylor, 2012; Klemm et al., 2019). Recent chromosome confor-

mation capture (3C)-derived techniques have led to a revolution in the detection of high-resolution

genome-wide DNA interactions (Kempfer and Pombo, 2020; McCord et al., 2020; Robson et al., 2019;

Xu et al., 2020). Several methods utilize TRs ChIP-seq (chromatin immunoprecipitation followed by

sequencing) data, 3D chromatin conformation information, and protein-protein interaction (PPI) networks

to infer TR cooperation in specific cell types, such as DBPnet, 3CPET, and HidPET (Djekidel et al., 2015;

Wang et al., 2019; Zhang et al., 2016). However, they are highly reliant on the availability of ChIPped factors

and loop-level chromatin interactions. Despite data limitations on the endogenous binding sites of suffi-

cient TRs and high-resolution chromatin interactions for the majority of human or mouse tissue/cell types,
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genomic DNase I footprinting enables the quantitative delineation of TR occupancy within native chro-

matin (Vierstra et al., 2020). Furthermore, chromatin loops can be accurately inferred from genome-wide

contact maps of 3C-derived assays (Salameh et al., 2020; Schwessinger et al., 2020; Zhang et al., 2019).

These technical advances allow computational predictions of global TR binding and short-range interac-

tion among CREs across extensive tissue/cell types, which greatly facilitates the systematic investigation

of context-specific TR cooperation in 3D chromatin.

In the present study, we initially present an analysis of 386 TR occupancy profiles in the K562 human mye-

logenous leukemia cell line, one of the ENCODE (Encyclopedia of DNA Elements) Tier 1 common cell types

with the most ChIPped chromatin-associated proteins. By applying a graphical model and overlapping

clustering on TR ChIP-seq profiles and high-resolution Hi-C interactions, we reveal interplay between

many known and novel TRs sustaining basal and leukemia-specific gene regulation in 3D chromatin. To

characterize context-specific TR cooperation across different biological conditions, we comprehensively

integrate TR motif information, DNase-seq/ATAC-seq (DNase I-hypersensitive site sequencing/assay for

transposase-accessible chromatin with high-throughput sequencing) data, and predict Hi-C chromatin

loops for 40 human tissue/cell types. This marks the first time a tissue/cell type-shared and -specific 3D

TR cooperation landscape has been constructed. Based on the network modularity analyses, disease-

causal variant enrichment analyses, and dynamic TR cooperation identification during cell development,

we demonstrate how these communications determine unique cellular functions and implicate disease

pathogenesis.
RESULTS

Inferring 3D TR cooperation using ChIP-seq of 386 TRs and chromatin loops in K562 cells

A Gaussian graphical model (GGM) comprises items and lines between them (Epskamp et al., 2018). In the

GGM, the line between two items captures partial correlation, which is controlled for all other items

included (Bhushan et al., 2019). This feature makes a key advantage of GGM that it avoids spurious corre-

lations. The nonparanormal graphical model, one derivative of GGM, is a semiparametric generalization for

continuous variables and has emerged as an important tool for modeling dependency structure between

items (Mulgrave and Ghosal, 2020; Xue and Zou, 2012; Zhang, 2019, 2020). These models can be incorpo-

rated to precisely infer the dependency structures of biomolecules (Liu et al., 2012; Yin and Li, 2011; Zhang

et al., 2016). The graphical Lasso is a sparse penalized maximum likelihood estimator for the precision ma-

trix of a multivariate Gaussian distribution when observations are limited (Friedman et al., 2008). We opti-

mized the graphical Lasso algorithm on the TR network model applied in DBPnet (Zhang et al., 2016) to

detect potential interplay among TRs in a high-dimensional chromatin environment (Figure S1A). To maxi-

mize the model’s generalization capability and to minimize the impact of DNA-binding signals among the

different TRs, measured either by ChIP-seq (including CUT&RUN and CUT&Tag technologies) or by

computational footprinting, we used peak information instead of sequencing reads when constructing

the TR-specific contact map together with Hi-C loops. In addition, we incorporated overlapping clustering

to estimate network modules, which allows the premise that a single TR can be involved in multiple coop-

eration communities as in vivo. Based on these extended features and other improvements, we

implemented a new pipeline, termed 3DCoop, to identify 3D TR cooperation by leveraging genome-

wide TR-binding sites and high-resolution chromatin interactions (see STAR Methods for details). Here,

we considered cooperation as something that is revealed by two TR molecules being in proximity to

each other considering 3D context and tissue/cell type specificity, regardless of whether there is any

biochemical/physical/sequential cooperation involved or not (Wang et al., 2019; Zhang et al., 2016).

We initially applied 3DCoop to the K562 human myelogenous leukemia cell line and investigated different

levels of TR cooperation in 3D chromatin using Hi-C loops (Figure S1A). Briefly, we collected and uniformly

processed 851 high-quality K562 ChIP-seq profiles of 386 TRs from ENCODE (Consortium et al., 2020a),

Cistrome DB (Zheng et al., 2019), and ChIP-Atlas (Oki et al., 2018) (Figure S1B). These chromatin-associated

TRs, with 18,510 peaks on average (Figure S2A), were classified into seven categories: TF, transcription

cofactor, RNA-binding protein (RBP), chromatin remodeler, nuclear enzyme, polycomb group (PcG) pro-

tein, and other factors (Table S1). For 3D genome data, we used 10-kb chromatin loops called from

K562 in situ Hi-C data using the Peakachu algorithm, yielding 16,629 significant interactions (Figure S2B).

Peakachu has been used for accurately estimating chromatin loops even from low sequencing depth of a

Hi-C library, which can facilitate the broader application of 3DCoop in widespread tissue/cell types (Sala-

meh et al., 2020). Then, TR-specific contact maps were constructed by combining ChIP-seq peaks and Hi-C
2 iScience 24, 103468, December 17, 2021
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significant interactions (Figure S2C). Based on these contact maps, the TR pair-wise correlation matrix was

generated using the generalized Jaccard similarity. Finally, the precision matrix was estimated from the TR

pair-wise correlation matrix by the copula nonparanormal graphical model (Liu et al., 2012) and then the TR

cooperation was inferred based on the precision matrix by the ClusterONE overlapping clustering method

(Nepusz et al., 2012) (see STAR Methods for details).

Benefiting from the available ChIA-PET (chromatin interaction analysis with paired-end tag sequencing)

datasets of K562 TRs, we were able to evaluate the consistency between TR-specific contact maps con-

structed by 3DCoop and ChIA-PET interactions. Of 24,887 significant interactions detected by CTCF

ChIA-PET, 17.33% of interactions were recovered by CTCF-specific contact maps (Figure S3A; p <

0.0026, permutation test, Figure S3B). Besides, RAD21/SMC2/ZNF143-specific contact maps recovered a

comparable proportion (17.23%–17.27%) of interactions, which was nearly 2-fold of the recovery rate

(7.38%–10.11%) by EP300/TBP/POLR2A-specific contact maps (Figure S3A). A similar trend was observed

when using RAD21 ChIA-PET peaks (23.03%–23.33% versus 9.31%–13.10%, Figure S3C; p < 0.0026, permu-

tation test, Figure S3D). Although the ChIA-PET datasets (low power in earlier experiment) are not golden

standard to evaluate our TR-specific contact maps (deWit and de Laat, 2012; Denker and de Laat, 2016), the

comparisons between the 3DCoop TR-specific contact maps and ChIA-PET signals of functionally relevant

proteins showed significant and reasonable results, which indicated the biological meaning of TR-specific

contact maps and the effectiveness of the combination between TR binding events and chromatin loops for

detecting TR cooperation.

Using TR-specific contact maps for each ChIPped factor, we investigated the activity of single-TR inter-

vening chromatin interactions by combining the genome-wide effects of 3D binding proportion and 3D

interaction proportion (Table S2, see STAR Methods for details). As expected, known cohesin subunits

or architecture proteins, such as RAD21, SMC3, ZNF143, CTCF, and YY1, showed remarkable activity in

3D chromatin. In addition, MAZ, REST, ARID2, RCOR1, JUND, MYC, CBX3, TEAD4, BHLHE40, MAX,

JUN, CTCFL, CC2D1A, IRF1, and ARID3A also displayed effects in the 3D genome, implying their potential

function in regulating genome organization (Figure 1A). MAZ was recently reported as a novel factor with

insulation property and contribution to genomic architectural organization (Ortabozkoyun-Kara et al.,

2020). BHLHE40 has a new role in modulating CTCF loop formation (Hu et al., 2020). CTCFL has a new

role in promoting regulatory chromatin interactions (Debruyne et al., 2019). These new findings largely sup-

port the effectiveness of 3DCoop procedures for identifying TR cooperation in 3D chromatin.
Assessment of predicted TR cooperation in 3D chromatin

Globally, 64 TR clusters, 222 TR maximum cliques, and 1,608 TR pairs were identified using the 3DCoop

pipeline in K562 cells (Tables S3, S4, and S5). Interestingly, we observed potential interplay among many

chromatin-associated RBPs such as HNRNPK-PCBP1 and PRPF4-U2AF1, which previous studies have docu-

mented (Xiao et al., 2019) and which direct PPI evidence supports (Figure 1B). By systematically collecting

the predicted TR cooperation records from existing protein complexes detection methods, including all

existing 3D methods (DBPnet [Zhang et al., 2016], 3CPET [Djekidel et al., 2015], and HidPET [Wang

et al., 2019]) and two representative 1D methods (NMF [Giannopoulou and Elemento, 2013] and TICA

[Perna et al., 2018]) (Table S6), we evaluated the recall of TR cooperation identified by 3DCoop in K562.

Given TR pairs detected by the 3DCoop pipeline and collected TR pairs from other methods in K562, per-

mutation analysis was performed to inspect the co-occurrence rate between 3DCoop and each of the

selected methods. Taking the DBPnet method as an example, there were 29 TRs involved, wherein 23

TRs were shared by 3DCoop and DBPnet, incorporating 38 and 25 TR pairs for 3DCoop and DBPnet,

respectively. Of 38 TR pairs, 10 (26.3%) were successfully detected by DBPnet, which was significantly

higher than that detected by random sampling datasets (p = 0.002, permutation test). Overall, even in

the absence of a gold standard, 3DCoop received significantly more shared TR pairs than expected by

chance given the reported TR cooperation from most of the selected methods (Figure S4), suggesting

its good performance in detecting the likely true TR cooperation.

3DCoop had several intrinsic properties from incorporating 3D interactome data. Besides, it can also be

used to detect 1D TR cooperation without 3D information. The comparison between the 3D and 1D TR

cooperation showed potential benefits by incorporating 3D interactome data. Briefly, 1D strategy resulted

in 70 TR clusters, 252 TRmaximum cliques, and 1,707 TR pairs in K562 (Figure S5A, Tables S7, S8, and S9). TR

cooperation identified using 3D strategy largely overlapped with those detected by the 1D strategy, such
iScience 24, 103468, December 17, 2021 3
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Figure 1. Evaluation of K562 TR cooperation identified by 3DCoop

(A) The activity of single-TR intervening chromatin interactions. The top20 TRs with the highest estimated effect were

labeled.

(B) K562 TR cooperation network identified using 3DCoop pipeline. The categories for each TR were shown using pie plot.

The size of TR node was weighted by its degree. Edges between TRs were weighted by their corresponding Glasso score.

(C) PPI evidence of detected TR cooperation from STRING, IntAct, BioGRID, and InBioMap databases.

See also Figures S1–S7.
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as CTCF/cohesin complex CTCF-RAD21-SMC3, and hematopoietic factors GATA1-TAL1, which is consis-

tent with previous findings (Zhang et al., 2016) (Figures 1B, S5A, and S5B). Compared with the 1D strategy,

the 3Dmode can detect many 3D-specific TR cooperation, which shows higher-order collaboration beyond

linear DNA. For example, TR pairs of CTCF-MAZ and RAD21-MAZ only appeared in the results of 3D strat-

egy, suggesting that MAZmight contribute to 3D chromatin regulation along with CTCF/cohesin complex.

Consistently, a recent CRISPR screen identified that MAZ functions as a CTCF insulator co-factor and
4 iScience 24, 103468, December 17, 2021
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RAD21 regulatory partner in Hox gene clusters (Ortabozkoyun-Kara et al., 2020). Besides, we found that,

in general, 3D TR cooperation contains more indirect (1–2 intermediate proteins) TR-TR interactions

than 1D TR cooperation (chi-squared test, Figure S5C), suggesting the 3D strategy is inclined to

capture distal cooperation among TRs. Taken together, these evidences support that incorporation of

3D interactome data will benefit the identification of TR cooperation in high-dimensional chromatin

environment.

To evaluate the performance of 3D TR cooperation detection in K562 cells, we first investigated the TR pairs

with PPI evidence from different databases. Based on the PPI from the STRING database, 20.15% of TR

pairs showed direct physical interaction, whereas 78.17% had indirect physical interaction, implying that

they could be connected with other intermediate factors (Figure 1C). We obtained similar results

using PPI data from the IntAct, BioGRID, and InBioMap databases, in which 4.35%–11.69% and

86.19%–93.53% of TR pairs had direct and indirect physical interactions, respectively (Figure 1C). These re-

sults suggest that other proteins or other collaborative mechanisms might mediate most of the detected

TR cooperation. To build a control baseline for PPI evidence, we constructed all possible TR pairs using all

TRs in the K562 cooperation network. We found that TR cooperation identified by 3DCoop received signif-

icantly more direct interactions in all four PPI databases (p < 0.05, chi-squared test, Figure S6A), suggesting

the effectiveness of 3DCoop results. Here, TR pairs that had no physical interactions but could be con-

nected by intermediate proteins were defined as indirect interactions. There are different degrees of indi-

rect interactions, but the majority (>96%) indirect TR interactions were connected by one or two interme-

diate TRs (Figure S6B). Besides, we inspected the 3DCoop TR pairs using mass spectrometry results from in

situ capture of chromatin interactions by biotinylated dCas9 (CAPTURE) at a well-characterized b-globin

locus in K562 cells (Liu et al., 2017). For 42 involved TRs between 3DCoop and CAPTURE, 53.45% of the

identified TR pairs were supported by the proteomic data of at least one captured locus. Moreover, nearly

half of the identified TR pairs (44.83%) showed physical interaction in the PPI databases. The TR pairs sup-

ported by the proteomic data and PPI databases included GATA1-TAL1 and several SWI/SNF subunits

(e.g., ARID1B, SMARCA4, SMARCC2) (Figure S7; Table S10). Taken together, these global and local eval-

uations demonstrate that 3DCoop has good detection power for capturing true TR cooperation in 3D

chromatin.
TR cooperation underpins cell type-specific cellular function

Modularity analysis of the TR cooperation network can facilitate the interpretation of a cooperative rela-

tionship of multiple TRs for sustaining specific cellular functions. One obviousmerit of the 3DCoop pipeline

is that it allows overlapped TRs in different network modules. In addition to simple TR pairs, 3DCoop ends

with two extra layers of TR cooperation, including overlapping TR clusters and TR maximum cliques. There-

fore, a single TR could be attached to different clusters and maximum cliques, which is closer to the real

situation of particular TR cooperation in cells. A clique that includes the largest possible number of vertices

and provides a dense core is a maximum clique. It can be extended to produce plausible biological net-

works (Eblen et al., 2009). As local modules in the entire TR cooperation network, maximum cliques could

be the best representatives for describing the biological function of TR cooperation. For each TRmaximum

clique identified by 3DCoop in K562 cells, the chromatin loop-associated genomic regions that encompass

all TRs in the clique were extracted and analyzed with the GREAT function enrichment algorithm (McLean

et al., 2010) (see STAR Methods for details). The KEGG pathways analysis can help us to interpret the

cellular functions of identified TR cooperation from 3DCoop in K562 cells. By limiting a minimal 100

genomic regions, 149 of 222 (67%) TRmaximum cliques were analyzed, yielding 186 significant KEGG path-

ways associated with clique-level TR cooperation. Among them, 74 TR maximum cliques were enriched

in more than 10% significant pathways and 70 pathways received more than 10% TR maximum cliques

(Figure S8, Table S11).

Based on hierarchical clustering, 70 pathways were classified into two major functional categories: leuke-

mia/immune system-related pathways and non-immunological pathways (Figures 2A and S8). More than

40% of maximum cliques in the K562 cells were significantly enriched in leukemia-specific or immune-

related pathways, such as acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and B cell re-

ceptor signaling pathway, which indicates that a large number of cooperating TRs in K562 cells can sustain

context-relevant biological functions. On the other hand, 74 maximum cliques could be roughly grouped

into two clusters (Figures 2A and S8). TR cooperation in the first cluster, which was involved in most of the

identified pathways, incorporated many architectural proteins, such as CTCF, cohesin, ZNF143, and YY1.
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Figure 2. Functional analysis of K562 TR maximum cliques from the cooperation network and consistency analysis between ChIP-seq-based

results and computational TF footprinting-based results in K562

(A) Association matrix between TR maximum cliques and biological pathways. TR maximum cliques that obtained more than 10% significant pathways and

KEGG pathways that were significantly enriched among more than 10% TR maximum cliques were used to plot the profile. Some representative TRs with

multiple cooperation evidence were labeled. The percentage of significantly enriched pathways for each maximum clique and the percentage of maximum

cliques with significant enrichment for each pathway were labeled on the top and left, respectively. Red for significant enrichment; blue for non-significant

enrichment.

(B) The CTCF-cohesin-associated TR maximum clique and its top15 significantly enriched pathways. The categories for each TR were shown using pie plot.

Pathways were ordered by adjusted p value for enrichment.

(C) The GATA1-TAL1-associated TR maximum clique and its top15 significantly enriched KEGG pathways.

(D) The association between TR maximum cliques and two repressive chromatin marks, H3K27me3 and H3K9me3. Colors in the heatmap represent the p

value reported by GREAT for the colocalization, red for enrichment and blue for depletion.

(E) The correlation of Glasso scores between ChIP-seq-based TR pairs and computational TF footprinting-based TR pairs (Pearson correlation).

(F) TRs in shared pairs restore significantly more ChIP-seq peaks than TRs in non-shared pairs (two-tailed Mann-Whitney U test).

(G) The footprinting regions of TRs in shared pairs overlap significantly more ChIP-seq peaks than TRs in non-shared pairs (two-tailed Mann-Whitney U test).

(H) The distribution comparison of ChIP-seq-based TR cooperation and computational TF footprinting-based TR cooperation across PPI evidence from

BioGRID, InBioMap, IntAct, and STRING databases (chi-squared test).

See also Figures S8–S10, and S13.
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For example, the top enriched pathways of the maximum clique CBX3-CTCF-JUND-MAZ-RAD21-REST-

SMC3-ZNF143 contained several hematopoietic cancer-related pathways (Figure 2B), suggesting that

such TR cooperation may operate cell type-specific gene regulation in leukemia by modulating 3D chro-

matin organization (Hou et al., 2010). The remaining maximum cliques were grouped together and consti-

tuted the second main cluster. The cooperation of these TRs was inclined to separately control more

specialized cellular functions in K562 cells. For example, the GATA1-GATA2-TAL1-associated and

POLR2A-TBP-associatedmaximum cliques were highly scored in the network and connected tomany path-

ways that determine immune and hematopoietic functions in particular (Figures 2C and S9). Together, the

clique-pathway interrelated profile indicates that the TR maximum cliques detected by 3DCoop can reca-

pitulate the context-dependent biological functions of transcriptional machinery in K562 cells.

To investigate the association between TR cooperation and chromatin states, we collected 13 epigenome

profiles of K562 cells from the Roadmap Epigenomics Project (Roadmap Epigenomics et al., 2015). We

tested the significance of colocalization between maximum clique-associated genomic regions and

peak regions of specific epigenetic marks using GIGGLE enrichment analysis (Layer et al., 2018) (see

STAR Methods for details). We found that the majority of TR cooperation significantly colocalized with

active chromatin marks, such as DNase I hypersensitive site (DHS), H2A.Z, H3K27ac, and H3K4me1 (Fig-

ure S10, Table S12). The colocalization of active chromatin marks probably is not that surprising given

that the maps are based on ChIPped factors and mostly function in open chromatin. However, the associ-

ation between TR cooperation and repressive chromatin marks showed distinct patterns on different

maximum cliques (Figure 2D). For example, several maximum cliques associated with DNA repair proteins

(e.g., RAD51), chromatin remodelers (e.g., ATRX, SIRT1, and KDM2B), and RBPs (e.g., AGO2 and SON)

were enriched in H3K27me3-marked regions (Figure S10). Interestingly, somemaximum cliques associated

with leukemia-specific factors (e.g., CBFA2T2, CBFA2T3, and TAL1) were enriched in H3K9me3-marked

regions, suggesting that the cooperation of these TRs could also function as important complexes at

repressive or bivalent chromatin. The colocalization analysis with chromatin marks revealed that the com-

munications between TR cooperation and certain chromatin environments shape cell type-specific gene

regulation.
Construction of the TR cooperation landscape across 40 human tissue/cell types

Previous attempts at detecting 3D TR cooperation were highly reliant on the availability of ChIPped factors

and high-resolution chromatin interactions, which significantly limited the broader application to wide-

spread tissue/cell types. Recent computational TF footprinting methods leveraged DNase-seq/ATAC-

seq profiles and TF motifs to infer TF-binding sites and achieved high recovery rates of ChIP-seq peaks

(Gusmao et al., 2016). To extend the identification of 3D TR cooperation in different conditions, we first sys-

tematically integrated 3,105 motifs of 1,480 human TRs by collecting and uniformly processing 16 existing

TF motif resources, such as CIS-BP (Weirauch et al., 2014), JASPAR (Fornes et al., 2020), HOCOMOCO (Ku-

lakovskiy et al., 2018), and others (Figure S11A, see STAR Methods for details). TFs and their co-factors

received most of the motifs, yet RBPs, chromatin remodelers, nuclear enzymes, and PcG proteins were

also included (Figures S11B and S11C), while 67.77% (1,003/1,480) TRs have more than one motif,
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25.74% (381/1,480) contain two motifs and 42.03% (622/1,480) contain three motifs (Table S13). We then

used PIQ computational TF footprinting based on these TR motifs, TR gene expression, and DNase-

seq/ATAC-seq profiles on specific tissue/cell types to estimate genome-wide TR-binding events (Sher-

wood et al., 2014) (see STAR Methods for details). We also used the predicted 10-kb chromatin loops by

Peakachu when tissue/cell type-specific Hi-C, open chromatin, and gene expression data were available

(Figure S11D). Finally, the 3DCoop pipeline was used for identifying TR cooperation across different tis-

sue/cell types by integrating TRmotifs, open chromatin, gene expression, and chromatin loops (Figure S12,

see STAR Methods for details).

We first applied this new strategy to the same 247 TRs using open chromatin, gene expression, and pre-

dicted chromatin loop data in K562 cells and compared the TR cooperation with the ChIP-seq-based re-

sults. Using computational TF footprinting, 77.5% of TR clusters and 85% of TR maximum cliques shared

at least one TR pair with the ChIP-seq results (Figures S13A and S13B). For the TR pairs, we compared their

Glasso scores between ChIP-seq-based results and computational TF footprinting-based results. The cor-

relation coefficient (r = 0.234, Pearson correlation, Figure 2E) is significantly higher than those of random

sampled ones (p < 1e-04, permutation test, Figure S13C). The comparison between ChIP-seq peaks and

inferred TF footprinting regions showed that the TRs in shared pairs obtained more restored peaks and

overlapped regions than the TRs in non-shared pairs (Figures 2F and 2G). Analysis of the results using

PPI data also showed that most of the TR pairs predicted by computational TF footprinting could be vali-

dated and there was no significant difference compared with results of TR pairs predicted by ChIP-seq data

(chi-squared test, Figures 2H, S13D, and S13E). These comparisons indicated the general concordance be-

tween computational TF footprinting-based results and ChIP-seq-based results.

Given the feasibility of the extended 3DCoop pipeline, we performed large-scale 3D TR cooperation analysis of

40 human tissue/cell types with condition-matched open chromatin, gene expression, and Hi-C data (Table

S14). Among these tissue/cell types, 192–922 TRs (mean: 655, median: 717) were investigated according to their

gene expression levels, and 18–86 clusters (mean, 48; median, 49), 193–55,626 maximum cliques (mean, 4,735;

median, 3,246), and 2,732–12,188 TR pairs (mean, 8,287; median, 8,338) were detected (Figure S14, Table S15).

Pairwise correlation and hierarchical clustering for TR pairs identified in more than 20% of the tissue/cell types

briefly recapitulated the cell type origin (Figure S15A). For example, H1-derived pluripotent cells were mostly

clustered in a separate group. Cells from the same lineage were also grouped together, such as A549,

NHEK, HMEC, and HUVEC epithelial and endothelial-derived cells, or K562 and GM12878 blood-derived cells.

HAP1 cells, which are near haploid and have one copy of almost every chromosome, showed the biggest dif-

ference from the others. However, tissue and cell type from the same organ generally diverged fromeach other,

and the coherent pattern vanishedwhen using tissue- or organ system-level clustering (Figures S15B and S15C),

suggesting that TR cooperation could be fine-scale and cell type-specific.

Based on the shared pattern of TR cooperation in 3D chromatin across 40 human tissue/cell types, we clas-

sified all detected TR pairs into four types: (1) 0.12% (n = 148) tissue/cell type-shared TR pairs in more than

75% of tissue/cell types; (2) 4.69% (n = 5,828) tissue/cell type-relatively shared TR pairs in more than 25% but

less than 75% of tissue/cell types; (3) 39.51% (n = 49,120) tissue/cell type-relatively specific TR pairs in at

least two but less than 25% of tissue/cell types; (4) 55.68% (n = 69,216) tissue/cell type-specific TR pairs

only in one tissue/cell type (Figure 3A, Table S16, see STAR Methods for details). Using gene expression

quantification from all samples in the Genotype-Tissue Expression (GTEx) Project, we found that the

expression correlation of the TR pairs showed a significant difference among the four TR cooperation cat-

egories (p < 2.22e-16, two-tailed Mann-Whitney U test, Figure 3B). As expected, the expression correlation

of the TR pairs gradually decreased from the tissue/cell type-shared group to the tissue/cell type-specific

group. Using the tissue-specific functional interactions from 145 tissues in HumanBase (Wong et al., 2018),

we found that the number of tissues associated with the identified TR pairs showed a significant difference

among the four TR cooperation categories (p < 0.05, two-tailed Mann-Whitney U test, Figure 3C). The tis-

sue/cell type-specific TR pairs exist in least tissues (median = 28, mean = 36), whereas tissue/cell type-

shared TR pairs exist in most tissues (median = 54, mean = 64). These results emphasized the distinct

pattern of tissue/cell type commonality and specificity among the cooperating TRs.
Tissue/cell type commonality and specificity of TR cooperation

With the 148 tissue/cell type-shared TR pairs (Table S16), we constructed a tissue/cell type-shared TR coop-

eration network (Figure 3D). Some well-characterized TR cooperation clusters were identified in this
8 iScience 24, 103468, December 17, 2021
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Figure 3. TR pairs classification and the shared TR cooperation network across 40 human tissue/cell types

(A) Summary information of TR pairs shared by different tissue/cell types. According to the shared pattern of TR cooperation in 3D chromatin across 40

human tissue/cell types, all detected TR pairs were classified into four categories, tissue/cell type-specific, tissue/cell type-relatively specific, tissue/cell type-

relatively shared, and tissue/cell type shared.

(B) Comparison of expression correlation for TR pairs in four categories using GTEx samples. The two-tailed Mann-Whitney U test was used to test the

significance.

(C) Comparison of tissue distribution for TR pairs in four categories using tissue-specific functional interactions across 145 tissues in HumanBase. The two-

tailed Mann-Whitney U test was used to test the significance.
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Figure 3. Continued

(D) Tissue/cell type-shared TR cooperation network. The categories for each TR were shown using pie plot. TR nodes with bigger size indicate that the

degree of nodes was greater or equal to 2.

(E) CTCF-RAD21-SMC3 cluster and its associated KEGG pathways. The categories for each TR were shown using pie plot. KEGG pathways were ordered by

the proportion of tissue/cell types having significant enrichment. KEGG pathways that were significantly enriched in more than 75% of tissue/cell types were

shown. See also Figures S11, S12, and S14–S17.
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network. For example, NF-kappa B is a pleiotropic TF present in almost all cell types and is composed of

NFKB1 or NFKB2 bound to REL, RELA, or RELB. The heterodimeric RELA-NFKB1 complex appears to be

the most abundant in gene regulation (Oeckinghaus and Ghosh, 2009), which is consistent with a

NFKB1-RELA-NFKB2 cluster. CTCF-RAD21-SMC3 was associated with both active transcription machinery

CDK7 and PcG/repressive factor BMI1 in the shared network. This cluster was enriched in many basic life

activity-related pathways and cancer-related pathways (Figures 3E and S16A), implying that such TR coop-

eration might be important in sustaining the basal functions of cell survival. Interestingly, DNMT1-MBD2-

SETDB1-E2F4 was identified as a cluster, and their potential genomic targets were related to many

important signaling pathways such as the Notch, Wnt, and p53 signaling pathways (Figure S16B), which re-

veals a shared TR partner recruitment mechanism of DNMTs for DNA methylation across tissue/cell types

(Hervouet et al., 2018). Similarly, other identified TR clusters, such as MAX-MYC-USF1 and CTNNB1-

KDM1A-ELK1, have been documented and play important roles in various tissue/cell types. This tissue/

cell type-shared TR cooperation network could provide a global reference for studying common transcrip-

tional partners. Besides, based on the five immune cells (HAP1, GM12878, K562, KBM7, and THP-1), we

built a blood-specific TR cooperation network (Figure S17A) and annotated the biological functions of clus-

ters using GREAT. More than half of enriched pathways (54%, 47/87) connected to immune-related func-

tions (see the mini-map in Figure S17B). When we zoomed in, we could find blood-related diseases

(CML and AML) and many immune-related pathways, such as T cell receptor signaling pathway, B cell re-

ceptor signaling pathway, and Toll-like receptor signaling pathway (see the bold items in the main part in

Figure S17B). The results also strengthened the association between the tissue/cell type-specific pathways

and 3DCoop-detected TR cooperation in function-relevant tissue/cell types.

For the majority of TR cooperation detected in specific tissue/cell types (mean, 1,730; median, 1,647 for 40

tissue/cell types) (Figure S18A), we selected single tissue-specific TR cooperation from eight GTEx-

matched tissues and evaluated their gene expression correlation. We found that TR pairs showed

significantly higher expression correlation in matched tissue than in other tissues (p < 2.22e-16, two-tailed

Mann-Whitney U test, Figure 4A), implying their tissue specificity at the transcription level. For 11 tissues

shared by 3DCoop and HumanBase, we calculated the correlation between Glasso score from 3DCoop

and posterior probability from HumanBase. TR pairs showed higher score correlation in matched tissue

than in other tissues, even though it was not statistically significant (p = 0.094, one-tailed Mann-Whitney

U test, Figure S18B). Tissue/cell type pair-wise comparisons showed that aorta-spleen (n = 300), H1-

hESC-H1-NPC (n = 230), and K562-GM12878 (n = 217) had the most shared TR pairs (Figure S18C). Among

the immune-related cell types, three myelogenous cell lines, i.e., K562, KBM7, and THP-1, were clustered

together as compared with a lymphoblastoid cell line, i.e., GM12878. Consistent with that result, the TR

cooperation pattern of HAP1 was relatively unique (Figure S18D). Moreover, the tissue/cell type-specific

landscape of TR cooperation facilitated the exploration of their novel and context-dependent biological

functions. For example, the basal expression of interferon (IFN)-induced genes (ISGs) is controlled through

STAT2-IRF9 complexes, whose formation does not require IFN-I receptor signaling (Kessler et al., 1990). In

the present study, we detected this tissue/cell type-relatively shared TR cooperation in 19 tissue/cell types.

IFN can stimulate resting-state macrophages by switching from STAT2-IRF9 complexes to the complete

ISGF3 complex containing STAT1, STAT2, and IRF9 (Au-Yeung et al., 2013; Platanitis et al., 2019). Consis-

tently, STAT1-IRF9 and STAT1-STAT2 are two tissue/cell type-specific TR pairs that were detected in only

THP-1 cells, a human monocytic cell line. The widespread presence of STAT2-IRF9 in multiple tissue/cell

types and the unique role of STAT1-STAT2-IRF9 TR cooperation in stimulated monocytes demonstrated

the tissue/cell type specificity of TR cooperation.

Studies on embryonic stem cells and other cell models have revealed that a small group of cell type-specific

or lineage-specific TFs forms an interconnected autoregulatory loop to govern transcriptional programs in

particular conditions (Boyer et al., 2005; Saint-Andre et al., 2016). Core transcription regulatory circuitry

(CRC) constitutes several core TFs and their interconnected autoregulatory loop, both of which are critical

for maintaining cell identity and cellular state. To investigate whether CRCs could support the tissue/cell
10 iScience 24, 103468, December 17, 2021
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Figure 4. Tissue/cell type specificity of TR cooperation

(A) Comparison of expression correlation for tissue/cell type-specific TR pairs between matched tissues and other tissues. The two-tailed Mann-Whitney U

test was used to test the significance.
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Figure 4. Continued

(B) Evaluation of tissue/cell type specificity based on 3DCoop-detected TR pairs and CRC-derived TR pairs from dbCoRC. Colors in the heatmap represent

the normalized enrichment z-score according to overlap ratio, red for enrichment. For each tissue/cell type in dbCoRC, tissue/cell types in 3DCoop were

prioritized according to their overlap ratio, and the ranks were labeled.

(C) Distribution of prioritized ranks among 25 matchable tissue/cell types with CRC information in dbCoRC. The ranks were binned into three intervals, (0,5],

(5,10], and (10,15].

(D) Distribution of prioritized ranks among 25 matchable tissue/cell types with super-enhancer regions in dbCoRC. The ranks were binned into four intervals,

(0,5], (5,10], (10,15], and (15,20].

See also Figures S18 and S19.
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type specificity of TR cooperation in tissue/cell type-matched conditions, for each tissue/cell type in

3DCoop, we compared the consistency between our detected TR pairs and CRC-derived TR pairs in

dbCoRC (Huang et al., 2018b) and then prioritized tissue/cell types according to the overlap ratio (Fig-

ure 4B). Among 25 matched tissue/cell types with CRC information in dbCoRC, 22 (88%) ranked in the

top5 and 24 (96%) ranked in the top10 (Figure 4C), and the majority of tissue/cell types (84%, 21/25) shows

no significant difference between tissue/cell types not exist in dbCoRC and those unmatched in dbCoRC (p

> 0.05, Mann-Whitney U test, Figure S19), suggesting good tissue/cell type agreement between TR coop-

eration and CRC. The comparison with tissue/cell type-specific TR pairs associated with super-enhancer

regions from dbCoRC showed similar results (Figures 4D and S18E). Super enhancer and CRC-derived

TR pairs in dbCoRC can help us to validate the cell type specificity of TR cooperation detected by 3DCoop

in different biological angles. The consistency between TR pairs detected by 3DCoop and TR pairs ex-

tracted from dbCoRC among the different conditions greatly support the tissue/cell type specificity of

our detected TR cooperation.
Information from tissue/cell type-specific TR cooperation facilitates the interpretation of

disease-causal variants

The majority of disease risk loci identified by genome-wide association study (GWAS) is located in the

non-coding genomic region; interpreting the biological mechanism underlying disease susceptibility

continues to be a challenge. Conventionally, disease-causal regulatory variants are prioritized via statis-

tical fine-mapping and functional annotations (Huang et al., 2018a, 2020), and the most plausible TFs

associated with causal variants are predicted for functional follow-up. However, computational predic-

tion of TFs altered by regulatory variants relies heavily on motif analysis but usually ignores the chromatin

context and TF dependency at the variant locus. Although recent studies have systematically analyzed

specific TFs binding to noncoding variants toward disease-associated risk loci using quantitative trait

mapping or SNP-SELEX (single-nucleotide polymorphism evaluation by systematic evolution of ligands

by exponential enrichment), they have been limited to a small fraction of TFs or disease-causal variants

(Tehranchi et al., 2016; Yan et al., 2021). Here, we hypothesized that context-specific TFs with coopera-

tion evidence are more likely linked to the true binding events at disease risk loci; therefore, the disease-

causal variants should be enriched for the TR cooperation-associated loci identified in the present study

rather than TR binding loci only estimated from motif scanning or computational TF footprinting.

To test this hypothesis, we first collected 7,747 candidate causal variants of 39 immune and non-immune

diseases/traits derived from a GWAS fine-mapping study (Farh et al., 2015). By sampling matched

control variants (Huang et al., 2021), we evaluated the genome-wide enrichment of the disease-causal

variants on the putative binding sites of the top20 TRs (18 TRs were eventually used due to two TRs pre-

senting cooperation evidence in <10 tissue/cell types, Table S14) with high activity intervening in chro-

matin interactions identified in this study across 40 human tissue/cell types. The putative TR-binding sites

associated with disease-causal variants were predicted according to three strategies: motif scanning

based on the TR position weight matrices (i.e., naı̈ve strategy) and computational TF footprinting without

(PIQ strategy) and with cooperation evidence (3DCoop) (see STAR Methods for details). As expected, the

disease-causal variants were highly enriched in TR-binding sites when considering tissue/cell type

context and cooperation evidence. Compared with the naı̈ve and PIQ strategies, the 3DCoop pipeline

yielded a larger proportion of significant TRs in more tissue/cell type-specific contexts (Figures 5A

and 5B). Moreover, the p values of enrichment in the 3DCoop group were significantly smaller than those

in the PIQ group (p = 4.08e-12, one-tailed paired t test, Figure 5C), suggesting that TR cooperation ev-

idence could be used to prioritize candidate TFs associated with certain disease-causal regulatory

variants.
12 iScience 24, 103468, December 17, 2021
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Figure 5. Interpreting disease-causal variants using tissue/cell type-specific TR cooperation

(A) Comparison of the number of tissue/cell types with significant disease-causal variants enrichment for each TR among naı̈ve strategy, PIQ strategy, and

3DCoop.

(B) Comparison of the percentage of selected TRs with significant disease-causal variants enrichment for each tissue among naı̈ve strategy, PIQ strategy, and

3DCoop. The naı̈ve strategy has only one point because it cannot leverage context-dependent information.

(C) Comparison of logarithmic p value for disease-causal variants enrichment among naı̈ve strategy, PIQ strategy, and 3DCoop. The one-tailed paired t test

was used to test the significance between PIQ strategy and 3DCoop.

(D) Comparison of logarithmic p value for autoimmune disease-causal variants enrichment between 3DCoop-unrestricted group and 3DCoop-specific

group. The one-tailed paired t test was used to test the significance.

(E) Comparison of significance for autoimmune disease-causal variants enrichment measured by permutation test on GM12878-specific TRs (GFI1, IKZF5,

and NOC2L) among naı̈ve strategy, PIQ strategy, 3DCoop-unrestricted group, and 3DCoop-specific group.

See also Figure S20.
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As the majority of disease-causal regulatory variants show tissue/cell type specificity in phenotypically relevant

contexts (Boix et al., 2021; Li et al., 2017a), we also investigated whether tissue/cell type-specific TR cooperation

could facilitate the interpretation of TF binding specificity of disease-causal regulatory variants. By collecting

12,738 causal variants for 54 blood-related autoimmune diseases from CAUSALdb (Wang et al., 2020) and

102 blood trait/autoimmune disease-related TRs from the literature (Table S17), we tested the enrichment of

autoimmunedisease-causal variants on the putative binding sites of 102 TRs selected among five blood-derived

cell types, namely, K562, GM12878, KBM7, HAP1, and THP-1 (see STARMethods for details). Notably, the auto-

immune disease-causal variants were more enriched in the binding sites with blood cell-specific cooperation

evidence (3DCoop-specific) than the binding sites with unrestricted cooperation evidence (3DCoop-unre-

stricted) for each of the 102 selected TRs (p = 2.41e-07, one-tailed paired t test, Figure 5D). For example,

GFI1, IKZF5, and NOC2L are highly expressed factors in GM12878 cells and are essential TRs in lymphopoiesis

(Ma et al., 2014; Merkenschlager, 2010; van der Meer et al., 2010). We found that, compared with the randomly
iScience 24, 103468, December 17, 2021 13
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sampled control variants, the autoimmune disease-causal variants exhibited similar binding enrichment pat-

terns among these TRs, where the binding sites with blood cell-specific cooperation evidence received the

best enrichment rather than those inferred from other strategies (Figure 5E). Taking the rs194747 associated

with IBD (inflammatory bowel diseases) as an example, it affects GFI1 binding in GM12878, which involves

the GFI1-CARM1 cooperation. This cooperation was supported by a previous investigation (Scheer and

Zaph, 2017) and may play an important role in lymphoid cell differentiation and the development of autoim-

mune disease. Similar results were observed for several K562-specific TRs (Figure S20A). In addition, randomly

selecting five tissue/cell types from other non-blood-derived tissue/cell types showed suboptimal results (Fig-

ure S20B). Together, these results indicate that context-dependent TR cooperation information can better inter-

pret disease-causal variants identified by GWAS.

Characterization of lineage-specific TR cooperation during neural development

3D genome rewiring and the associated TR interplay facilitate the spatiotemporal control of gene expression

during cell development. To demonstrate the ability of our 3DCoop for identifying changes in TR cooperation

during sequential development stages, we constructed a TR interplay network and estimated potential TR

cooperation in 3D chromatin across three cell states of mouse neural development (embryonic stem cell [ES],

neural progenitor cell [NPC], cortical neuron [CN]) by systematically integrating ultra-high-resolution Hi-C inter-

actions (Bonev et al., 2017), ATAC-seq, RNA-seq, and 1,636motifs of 836mouse TRs (Figure S21, Tables S18 and

S19). Among 121 ES, 139 NPC, and 249 CN TRs filtered through their gene expression and available motifs, 68

TRs were shared among the three cell states (Figure 6A). 3DCoop identified 20/16/37 TR clusters, 30/20/68

maximum cliques, and 308/327/492 TR pairs for ES, NPC, and CN, respectively (Figure S22 and Tables S20–

S28). Similar to the sharing pattern of the expressed TRs, ES and NPC had the most 72 shared TR pairs,

more than the 46 TRpairs shared byNPCandCN, and the 28 TRpairs sharedby ES andCN (Figure 6B). Network

modularity analyses revealed shared TR cooperation networks during neural development, including a classical

3D TR cooperation cluster: Ctcf-Rad21-Smc3 (Figure 6C). We also constructed a TR cooperation network using

TR pairs shared by any two cell states (Figure S23). Likewise, some TR cooperation in specific-state transition was

clustered, such as Hcfc1-Yy1 in the ES-NPC stages. Hcfc1 loss-of-function mutations can disrupt neuronal and

neural progenitor cells of the developing brain (Jolly et al., 2015). Hcfc1 collaborating with Yy1 (Michaud et al.,

2013), a potential structuring factor (Weintraub et al., 2017), presents a candidate mechanism warranting further

investigation during early neuronal development.

Some TR cooperation clusters were only identified in a particular cell state. Cooperation among themaster reg-

ulators Nanog, Pou5f1, and Sox2 is essential formaintaining pluripotency (Chambers and Tomlinson, 2009), and

this TR cooperation was only detected in ES. GREAT annotation analysis of the Nanog-Pou5f1-Sox2-associated

genomic regions showed significant enrichment on circadian regulation of gene expression, circadian clock

entrainment by photoperiod, and photoperiodism (Figure 6D). We also reveal a unique Klf-associated TR coop-

eration cluster, Chd1-Klf4-Klf5-Klf6-Mta3-Patz1-Pml-Sp3-Zfp281, in the 3D chromatin of ES, which provides evi-

dence that Klf4 and its concrete partners are involved in organizing and regulating the pluripotency-associated

3Denhancer networks (DiGiammartino et al., 2019) (Figure 6E). In addition, we found that the cooperativemem-

bersofGabpaweredynamically changedduringneural development. InCN,Gabpawas connected inparticular

to Elf2 and Elk1 instead of Etv proteins, suggesting a specific function of such TR cooperation in the developed

neuron (Figure S22). A recent enhanced yeast one-hybrid assay has confirmed the Gabpa-Elf2-Elk1 physical in-

teractions (Shrestha et al., 2019).

Notably, although Ctcf-Rad21-Smc3 cooperation was detected in all three cell types, their associatedmembers

varied dynamically during neuron differentiation (Figure 6F). GREAT annotation revealed a large difference in

cellular functions driven by Ctcf-Rad21-Smc3-related TR cooperation in different stages (Figure 6G). Cell plurip-

otency-associated functions were generally enriched in ES. Biological functions such as anatomical structure

regression and endothelial cell development were enriched in NPC. Meanwhile, more specialized functions,

including cellular macromolecule localization, synaptic vesicle transport, and positive regulation of synapse

maturation were enriched in CN. Together, these 3DCoop results are consistent with previous findings and

imply that the cooperative partners for specific TRsmay determine target gene recognition in a context-specific

manner during cell development.

DISCUSSION

Combinatorial binding of chromatin-associated factors to CREs underpins dynamic gene regulation in the

nucleus. Based on 386 ChIPped chromatin factors and high-resolution chromatin loops, we performed the
14 iScience 24, 103468, December 17, 2021
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Figure 6. Lineage-specific TR cooperation during mouse neural development

(A) The Venn graph of qualified TRs among three cell states, ES, NPC, and CN.

(B) The Venn graph of TR pairs detected by 3DCoop among three cell states, ES, NPC, and CN.

(C) The TR cooperation network constructed from 17 TR pairs shared by all three cell states. TR clusters were colored for distinction.

(D) Nanog-Pou5f1-Sox2 cooperation cluster in ES and its top15 significantly enriched biological processes based on GREAT annotation analysis. Biological

process terms from GO (Gene Ontology) were ordered by adjusted p value for enrichment.
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Figure 6. Continued

(E) Chd1-Klf4-Klf5-Klf6-Mta3-Patz1-Pml-Sp3-Zfp281 cooperation cluster in ES and its top15 significantly enriched biological processes based on GREAT

annotation analysis.

(F) The changes of associated TR members of Ctcf-Rad21-Smc3 cooperation during mouse neural development, from ES to NPC to CN. Edges between TRs

were weighted by their corresponding Glasso score.

(G) Comparison of cellular functions driven by Ctcf-Rad21-Smc3-related TR cooperation in different stages. Cellular functions were characterized by

significantly enriched biological process terms from GO based on GREAT annotation analysis.

See also Figures S21–S23.
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largest TR cooperation analysis in K562 cells and demonstrated that TR cooperation largely contributes to

leukemia-specific and immune-related function. Measurement of the activity of the TR intervening chro-

matin interactions showed that some TRs function as novel architectural proteins in regulating genome or-

ganization, such as MAZ (Ortabozkoyun-Kara et al., 2020), BHLHE40 (Hu et al., 2020), CTCFL (Debruyne

et al., 2019), REST, and MAX. Consistent with recent findings (Van Nostrand et al., 2020; Xiao et al.,

2019), we also observed several potential interplays among many chromatin-associated RBPs. So far, the

categorization of TR cooperation and their chromatin arrangement in the 3D genome across different tis-

sue/cell types remains challenging. To extend the genome-wide detection of TR cooperation in broad tis-

sue/cell types, we leveraged computational TF footprinting to delineate a landscape of TR cooperation

networks and to illustrate the previously uncharacterized patterns of TR cooperation across 40 human tis-

sue/cell types. We also demonstrated how the tissue/cell type-specific TR cooperation information can aid

the interpretation of disease-causal regulatory variants and dynamic TR cooperation during cell

development.

Compared with the previous method DBPnet, the novelties of 3DCoop pipeline include using peaks than

signals of ChIP-seq datasets, which makes it generalized, and incorporating overlapping clustering to es-

timate network modules, which allows the premise that a single TR can be involved in multiple cooper-

ation communities as in vivo. Considering the difficulty to derive tissue/cell type-specific PPIs from exper-

imental data or public resources such as STRING, we did not directly incorporate PPI information into the

3DCoop pipeline. Alternatively, tissue/cell type-specific epigenomics data accumulate intensively

recently, including DNase-seq/ATAC-seq and ChIP-seq/CUT&Tag, which motivates us to generalize

the 3DCoop on widespread conditions. In addition, although TR binding patterns (such as TR co-binding

frequency and shared motif site frequency) were not used directly in 3DCoop pipeline, they were

embodied implicitly. For example, the generalized Jaccard similarity based on the TR-specific contact

maps reflects the TR co-binding in 3D chromatin. More than two-thirds TRs used in our generalized

3DCoop pipeline have two or three motifs. These motifs may encode co-binding patterns among mul-

tiple TRs.

Although we have delineated potential cooperation between many TRs in 3D chromatin across different

tissue/cell types in the present study, the complete arrangement pattern of TR cooperation remains un-

known (Morgunova and Taipale, 2017). Whether the cooperative bindings are aggregative, sequential,

or competitive requires further investigation (Rao et al., 2021). Recent multi-way chromatin contacts iden-

tification methods have enabled capture of the simultaneous interactions among CREs, such as C-walks

(Olivares-Chauvet et al., 2016), SPRITE (Quinodoz et al., 2018), and Trac-looping (Lai et al., 2018), which

will greatly expand the searching space of potential TR communications. To incorporate more tissue/

cell types, we used chromatin loops at 10-kb resolution identified by Peakachu to construct TR-specific con-

tact maps. This compromise may introduce false-positive detection of TR cooperation, although good

agreements among Hi-C and ChIA-PET data can be achieved. Micro-C and DNase Hi-C, utilizing micro-

coccal nuclease or DNase I to cut genomic DNA, can achieve mononucleosome resolution (Hsieh et al.,

2015; Ma et al., 2015). Such fine-scale chromatin interaction capture techniques and high-throughput vali-

dation experiments in specific contexts (Stampfel et al., 2015) could facilitate more precise identification of

TR cooperation in 3D chromatin. Moreover, large-scale 3D genome profiling of more tissue/cell types and

development states will further extend the volume of TR cooperation identification (Jung et al., 2019;

Zhang et al., 2020).

Only a small fraction of chromatin-associated factors has been ChIPped in diverse tissue/cell types (Con-

sortium et al., 2020b; Lambert et al., 2018), yet high-density DNase I cleavage maps, together with abun-

dant TR motifs, enable computational analysis of TF occupancy across the whole genome (Meuleman et al.,

2020; Vierstra et al., 2020). The difference in TR cooperation between that inferred by TF footprinting and
16 iScience 24, 103468, December 17, 2021
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ChIP-seq-based results is inevitable. It can be attributed to many intrinsic experimental features and biases

of the applied methods. For example, ChIP-seq can capture the tethered binding of TRs that do not have

DNA-binding domains or that indirectly interact with genomic DNA, while computational TF footprinting is

highly reliant on cognate or composite recognition sequences that could be shared by different TRs (Jolma

et al., 2015; Sung et al., 2014). In addition, computational footprinting analyses using DNase-seq or ATAC-

seq contain distinct sequence biases, but existing footprinting methods selectively address these biases

and exhibit varied performance on different TRs (He et al., 2014; Karabacak Calviello et al., 2019). The

combinatory application of multiple tools, not only PIQ in the present study, and the introduction of repro-

ducibility assessment could mitigate such biases (Gusmao et al., 2016; Karabacak Calviello et al., 2019). The

recent Micro-Capture-C has also introduced single-base pair maps of ligation junctions for analyzing direc-

tional footprinting and protein-protein contacts at high resolution between viewpoints and interacting el-

ements (Hua et al., 2021), which would significantly facilitate the identification of fine-scale TR cooperation

in 3D chromatin.

The landscape of TR cooperation established by applying 3DCoop to 40 human tissue/cell types

could be a useful resource in TR cooperation study and regulatory genomics. There are several

potential biological applications based on the generated data. The identified tissue/cell type-

shared TR cooperation network could provide a global reference for studying common transcriptional

partners. Also, the TR cooperation detected by 3DCoop shows the tissue/cell type specificity, which

can promote the regulatory genomics study in certain tissue/cell type as the data growing for more

and more tissue/cell types. Tissue/cell type-specific TR cooperation can facilitate the interpretation of

disease-causal variants identified by GWAS, especially for prioritizing candidate TFs associated with

certain disease-causal regulatory variants. Moreover, the lineage-specific TR cooperation during tissue

development could facilitate the relevant studies for gene regulation dynamics. We expect that the

resource and 3DCoop pipeline, together with the new findings, will benefit mechanistic research on

how the cooperation of certain TRs shapes cell type-specific gene regulation in development and

disease progression.
Limitations of the study

Genome-wide systematic detection of TR cooperation across multiple tissue/cell types is experimental,

expensive, and sometimes irreproducible. Because of the lack of ground truth in the field, a rigorous eval-

uation is currently infeasible given the available data, particularly for tissue/cell type-specific TR coopera-

tion. Thus, experimental validation of some context-specific TR cooperation will improve the rigorousness

of the predicted results and deserve further investigation.
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Deposited data

K562 ChIP-seq ENCODE; Cistrome DB; ChIP-Atlas https://www.encodeproject.org/; http://

cistrome.org/db/;

https://chip-atlas.org/

K562 in situ Hi-C Rao et al., 2014 GEO: GSE63525

K562 CTCF ChIA-PET ENCODE ENCODE: ENCSR000CAC

K562 RAD21 ChIA-PET ENCODE ENCODE: ENCSR000FDB

PPI data STRING; IntAct; BioGRID; InBioMap https://string-db.org/; https://www.ebi.ac.uk/

intact/; https://thebiogrid.org/; http://www.

lagelab.org/resources

K562 epigenomic marks ChIP-seq Roadmap Epigenomics project https://roadmapproject.org/

Human TRs and motifs Cis-BP 1.02; JASPAR 2018; HOCOMOCO v11;

etc.

http://cisbp.ccbr.utoronto.ca/; http://jaspar.

genereg.net/; https://hocomoco11.autosome.

ru/; see STAR Methods for details

Human tissue/cell types Hi-C 3D Genome Browser http://3dgenome.fsm.northwestern.edu/; see

Table S14 for details

Human tissue/cell types DNase-seq/ATAC-seq ENCODE; Roadmap; GEO See Table S14 for details

Human tissue/cell types RNA-seq ENCODE; Roadmap; GEO See Table S14 for details

Tissue-specific functional interactions HumanBase https://humanbase.flatironinstitute.org/

CRC data dbCoRC http://dbcorc.cam-su.org/

GWAS disease-causal variants PICS GWAS fine-mapping study; CAUSALdb https://pubs.broadinstitute.org/pubs/

finemapping/; http://mulinlab.org/causaldb

Mouse TRs and motifs Cis-BP 1.02; JASPAR 2018; HOCOMOCO v11;

etc.

http://cisbp.ccbr.utoronto.ca/; http://jaspar.

genereg.net/; https://hocomoco11.autosome.

ru/; see STAR Methods for details

Mouse Hi-C 3D Genome Browser http://3dgenome.fsm.northwestern.edu/; see

Table S19 for details

Mouse ATAC-seq GEO See Table S19 for details

Mouse RNA-seq GEO See Table S19 for details

Software and algorithms

MuSERA (v2.3) Jalili et al., 2017 http://www.bioinformatics.deib.polimi.it/

genomic_computing/MuSERA/

HiC-Pro (v2.10.0) Servant et al., 2015 https://nservant.github.io/HiC-Pro/

Peakachu (v1.1.2) Salameh et al., 2020 https://github.com/tariks/peakachu

bedtools (v2.27.1) Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

R (v3.5.1) R Core Team, 2018 https://www.r-project.org/

huge (v1.2.7) R package https://cran.r-project.org/web/packages/

huge/index.html

ClusterONE (v1.0) Nepusz et al., 2012 https://paccanarolab.org/cluster-one/

igraph (v1.2.4) R package https://igraph.org/r/

GREAT (v3.0.0) McLean et al., 2010 http://great.stanford.edu/public/html/

GIGGLE (v0.6.3) Layer et al., 2018 https://github.com/ryanlayer/giggle

MACRO-APE (v3.0.2) Vorontsov et al., 2013 https://opera.autosome.ru/macroape/
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fpc (v2.2-3) R package https://cran.r-project.org/web/packages/fpc/

index.html

PIQ (v1.3) Sherwood et al., 2014 https://bitbucket.org/thashim/piq-single/src/

master/

vSampler (v1.2) Huang et al., 2020 http://mulinlab.org/vsampler/

FIMO from MEME suite (v5.3.0) Grant et al., 2011 https://meme-suite.org/meme/doc/fimo.html

tidyverse (v1.2.1) R package https://www.tidyverse.org/

ggnetwork (v0.5.8) R package https://cran.rstudio.com/web/packages/

ggnetwork/index.html

3DCoop This paper https://github.com/mulinlab/3Dcoop
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Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Mulin Jun Li (mulinli@connect.hku.hk).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper analyses existing, publicly available data. These accession numbers for the datasets are listed

in the key resources table.

d All original code has been deposited at GitHub (https://github.com/mulinlab/3Dcoop) and is publicly

available as of the date of publication. It has been listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Collecting and processing data in K562

The ChIP-seq datasets in K562 were systematically collected from three databases, ENCODE (Consortium

et al., 2020a), Cistrome DB (Zheng et al., 2019), and ChIP-Atlas (Oki et al., 2018). Only datasets with no se-

vere auditing problems (that is, without orange and red audit signs) in ENCODE, no poor quality (that is,

with six green QC signs in Cistrome DB website) in Cistrome DB, and peaks with q value less than 1e-05 in

ChIP-Atlas, were collected. Based on the high-quality ChIP-seq datasets, different profiles for the same TR

were collapsed by MuSERA (v2.3) (Jalili et al., 2017). The categories of human TRs were assigned according

to their classification in ENCODE and literature mining: transcription factor (TF), transcription cofactor,

RNA-binding protein (RBP), chromatin remodeler, nuclear enzyme, polycomb group (PcG) protein, and

other factors. The K562 in situ Hi-C dataset was downloaded from GSE63525 (Rao et al., 2014), and pro-

cessed by HiC-Pro (v2.10.0) (Servant et al., 2015) in 10-kb resolution on the human GRCh37/hg19 genome.

The significant interactions from in situ Hi-C dataset were identified using Peakachu (v1.1.2) (Salameh et al.,

2020). ChIA-PET chromatin interactions were downloaded from ENCODE (ENCSR000CAC for CTCF and

ENCSR000FDB for RAD21) (Consortium et al., 2020a; Tang et al., 2015).
The 3DCoop pipeline

We optimized the graphical Lasso algorithm based on the TR network model applied in DBPnet (Zhang

et al., 2016) to detect potential interplay among TRs in a high-dimensional chromatin environment (Fig-

ure S1A). To maximize the generalization capability of the model and minimize the impact of DNA-binding

signal among different TRs which measured either by ChIP-seq (including CUT&RUN and CUT&Tag tech-

nologies) or by computational footprinting, we used narrow peak information instead of raw sequencing

reads when constructing TR-specific contact map together with Hi-C loops. Firstly, the TR peaks were
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mapped to 10-kb significant Hi-C interactions using bedtools (v2.27.1) (Quinlan and Hall, 2010). The signif-

icant interaction was assigned as the TR-specific contact map when a peak could be mapped to either end

of this interaction. Based on the TR-specific contact maps, we calculated the generalized Jaccard similarity

to construct the TR pair-wise correlation matrix by considering the interaction intensity of each TR-associ-

ated contact. Then the graphical Lasso algorithm (Glasso) was adopted and the precision matrix was esti-

mated from the TR pair-wise correlation matrix to reduce the false positive rate of potential TRs depen-

dency. The copula nonparanormal graphical model was used with the huge package (v1.2.7) in R (Liu

et al., 2012). To estimate network modules, we incorporated overlapping clustering method to compute

communities and maximum cliques using ClusterONE (v1.0) (Nepusz et al., 2012), which allows that single

TR can involve in multiple cooperation communities. Finally, the igraph R package (v1.2.4) was used to anal-

yse and extract TR clusters, TRmaximum cliques, and TR pairs. Based on these extended features and other

improvements, we implemented a new pipeline, termed 3DCoop, to identify 3D TR cooperation by

leveraging genome-wide TR binding sites and high-resolution chromatin interactions. Except for the 3D

mode, 3DCoop pipeline could also be used in 1D mode without 3D chromatin loops. The genome was

binned into non-overlapping 10-kb windows with makewindows command from bedtools (v2.27.1), and

the peaks of ChIP-seq were mapped to genome bins to get TR-specific contacts. Then the following steps

were same to 3D mode.

Comparison with ChIA-PET datasets

The ChIA-PET data on limited TRs could help us briefly interrogate the derived contact maps for several

classical architecture proteins such as CTCF and cohesion. The pairtopair command from bedtools

(v2.27.1) with parameter ‘‘-type both’’ was used to overlap the contact maps and ChIA-PET data to calculate

the recovering rate. To make the results more interpretable, we used the permutation to build a null dis-

tribution (baseline) of TR-specific contact maps. In K562, we permuted 14,969 contacts which equals the

contacts for CTCF from aggregated contact maps of all investigated TRs. With 386 (the total number of

investigated TRs in K562) permutations, we overlapped each of permuted contact maps with the CTCF

ChIA-PET loops and calculated the recovering rate. Similar permutation was also done for cohesin complex

component RAD21.

Measurement of TR activity in 3D chromatin

The activity of single TR intervening chromatin interactions was measured by combining its 3D binding pro-

portion and 3D interaction proportion. The 3D binding proportion was measured by the proportion of TR

binding sites within interaction regions over total TR binding sites. The 3D interaction proportion was

measured by the proportion of TR-specific interactions over total Hi-C significant interactions. For compar-

ison of the effect among TRs, these two proportions were converted to odds ratio by dividing their average

proportion followed by 0-1 range normalization, respectively. Then, the normalized odds ratios were com-

bined by product to get the final estimated effect in 3D chromatin, in which the bigger score indicates the

stronger activity of TR intervening chromatin interactions.

Comparison with PPI, methods, and experimental data

We collected the human physical PPI data from four databases, STRING (Szklarczyk et al., 2019), IntAct (Or-

chard et al., 2014), BioGRID (Oughtred et al., 2019), and InBioMap (Li et al., 2017b). TR pairs that had the

physical interactions were defined as direct interaction. TR pairs that had no physical interactions but could

be connected by intermediate proteins were defined as indirect interactions. Other TR pairs were defined

as not available (NA) interactions. We also collected K562 TRs cooperation data for all existing 3D-based

methods (3CPET (Djekidel et al., 2015), DBPnet (Zhang et al., 2016), and HidPET (Wang et al., 2019)) and two

representative 1D methods (NMF (Giannopoulou and Elemento, 2013) and TICA (Perna et al., 2018)). The

comparison was performed in three steps. Firstly, for each existing method, the TRs shared with 3DCoop

were extracted. Secondly, the TR pairs related to shared TRs were used and compared with existing

methods to retrieve the overlapping proportion. Finally, permutation analysis was used to detect the sta-

tistical significance of overlapping by randomly selecting TR pairs from shared TRs when the number of

sampled TR pairs was equal to the number of TR pairs detected by 3DCoop, and calculating the overlaps

with TR pairs detected by existing methods. The p value was calculated as the number of random sampling

datasets with overlapping proportion greater than or equal to real overlapping proportion in 10,000 per-

mutations. Only the physical interactions from PPI databases were considered in the comparison of TR pairs

with mass spectrometry-based TR pairs at the b-globin locus via in situ capture of chromatin interactions by

biotinylated dCas9 (CAPTURE) in K562 (Liu et al., 2017).
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Functional annotation of TR maximum cliques

We extracted the 10-kb genomic regions shared by all TRs in the maximum clique from TR-specific contact

maps. The top5,000 regions with the highest interaction intensity were kept for functional annotation. Only

the TRmaximum cliques with more than 100 unique genomic regions were analysed. Functional annotation

and enrichment for associated genomic regions of each maximum clique were performed using GREAT

(v3.0.0) (McLean et al., 2010) with default parameters, and the whole genome was used as the background.

The KEEG pathways were extracted from the GREAT results and the pathways which had the Benjamini-

Hochberg adjusted p values less than 0.05 were considered as significantly enriched terms. The maximum

cliques and pathways were hierarchically clustered with complete-linkage clustering method based on the

adjusted p values of enrichment. Only TR maximum cliques enriched in more than 10% significant pathways

and KEGG pathways received more than 10% TR maximum cliques were analysed and visualized in detail.

Colocalization analysis on epigenomic marks

DNase I hypersensitive site (DHS), H2A.Z, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me1, H3K9me3,

H3K27ac, H3K27me3, H3K36me3, H3K79me2, and H4K20me1 ChIP-seq peaks were obtained from the

Roadmap Epigenomics project (Roadmap Epigenomics et al., 2015). The unique genomic regions for

each TRmaximum clique, extracted by the aforementionedmethod, were used to investigate potential co-

localization with 13 epigenomic marks using GIGGLE (Layer et al., 2018). GIGGLE identified and ranked the

significance of shared genomic loci between TR maximum clique related genomic regions and epigenome

marks. The GIGGLE Fisher’s two-tailed test and odds ratio with directional information were used to inter-

pret the enrichment or depletion of epigenomic mark on TR maximum clique.

Collecting and processing of human TR motifs

We systematically collected human TRs and motifs from 16 existing TF motif resources, including Cis-BP

1.02 (Weirauch et al., 2014), JASPAR 2018 (Fornes et al., 2020), HOCOMOCO v11 (Kulakovskiy et al.,

2018), TRANSFAC (Matys et al., 2006), ENCODE-motifs (Kheradpour and Kellis, 2014), HOMER motifs

(Heinz et al., 2010), SwissRegulon (Pachkov et al., 2013), hPDI (Xie et al., 2010), UniPROBE (Hume et al.,

2015), ReMap2 (Cheneby et al., 2018), GTRD (Yevshin et al., 2019), SELEX (Jolma et al., 2010), and four liter-

ature (Isakova et al., 2017; Jolma et al., 2013, 2015; Yin et al., 2017). To reduce the motif redundancy from

different resources, we used MACRO-APE (v3.0.2) (Vorontsov et al., 2013) to select the best up to three

distinct motifs by measuring the similarity of available motifs for each TR. The optimal cluster number

was selected based on Calinski-Harabasz index using the pamk function from the fpc package (v2.2-3).

When there was more than one motif in a cluster, the best motif was kept according to motif width (6 %

W % 18) and the higher information content (but not outlier).

Extended 3DCoop using computational TF footprinting

For human tissue/cell types with available Hi-C data and Peakachu-based chromatin loops in the 3D

Genome Browser (Wang et al., 2018), we searched tissue/cell type-matched DNase-seq and RNA-seq

data from the GEO database and published resources (Consortium et al., 2020a; Roadmap Epigenomics

et al., 2015), resulting in 40 tissue/cell types with necessary profiles. The DNase-seq dataset for the THP-

1 cell line was not found, and its ATAC-seq dataset was used instead. The BAM file of open chromatin assay

for each dataset was used and converted to genomeGRCh37/hg19. For RNA-seq, the TPM (Transcripts Per

Million) was calculated and used to represent the gene expression level. When these datasets were pre-

pared, the genome-wide TR binding events were estimated based on TR motifs, TR gene expression,

and DNase-seq/ATAC-seq profiles. Firstly, the TRs were filtered by their gene expression level in certain

tissue/cell type, and only TRs with sufficient expression (average TPM R10) were kept. Secondly, TF foot-

printing sites were identified based on the DNase-seq/ATAC-seq profiles and uniformly integrated TR mo-

tifs by using PIQ (v1.3) with default parameters (Sherwood et al., 2014). The purity value of 0.7, which means

that 70% of instances of motif matches could be true binding sites, were used to filter the PIQ results. For

TRs with more than onemotif, the match instances of all motifs were merged by bedtools (v2.27.1) to repre-

sent the genome-wide footprinting. After that, the following steps were the same as the 3DCoop pipeline

for K562.

Analysis of tissue/cell type specificity of TR cooperation

We examined the tissue/cell type specificity of selected TR pairs based on the proportion of tissue/cell

types containing them. TR pairs were classified into four categories according to their shared patterns.
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Specifically, TR pairs that were shared in no less than 75% (nR 30) tissue/cell types were classified as tissue/

cell type-shared TR pairs. TR pairs that were shared by no less than 25% but less than 75% (10 % n < 30)

tissue/cell types were classified as tissue/cell type-relatively shared TR pairs. TR pairs that were shared

by at least two but less than 25% tissue/cell types (2 % n < 10) were classified as tissue/cell type-relatively

specific TR pairs. The remaining TR pairs which were detected only in one tissue/cell type (n = 1) were clas-

sified as tissue/cell type-specific TR pairs. For tissue/cell type-shared TR pairs which were shared in no less

than 75% (n R 30) tissue/cell types, we constructed a shared TR cooperation network and annotated the

function of certain TR cluster according to theGREAT annotation procedure described before for the inves-

tigation of TR maximum cliques in K562. To evaluate the classification of TR cooperation, we investigated

the expression correlation of TR pairs in different TR cooperation categories using GTEx RNA-seq samples.

Besides, the tissue-specific functional interactions from 145 tissues were downloaded from HumanBase to

evaluate the classification and the tissue/cell type specificity of TR cooperation. Based on the five immune

cells (HAP1, GM12878, K562, KBM7, and THP-1), the blood-specific TR cooperation network was built by

extracting the TR pairs existing in at least four immune cells. The clusters which contain at least three

TRs were extracted and then annotated usingGREAT. The KEGGpathways which were significant in at least

50% immune cells were gathered and analyzed in detail. The immune-related pathways were extracted

from KEGG pathways categories 5.1 (Immune system) and 6.6 (Immune disease).

Evaluation of tissue/cell type-specific pattern with CRC

dbCoRCcontains core transcription regulatory circuitry (CRC)models from188 human samples through compu-

tational analysis of H3K27ac ChIP-seq data (Huang et al., 2018b). We matched 40 human tissue/cell types with

dbCoRC tissue/cell types, and resulted in 25 tissue/cell types. Then, weextractedTRs fromCRCs and associated

super-enhancer regions. For certain CRC- or super-enhancer regions-derived TR in each of 25 tissue/cell types,

we counted the number of TR pairs related to this TR and calculated its proportion to total TR pairs detected by

3DCoop in eachof 40 tissue/cell types. Thenwe averaged the proportionof all CRC- or super-enhancer regions-

derived TRs toget the overlap ratio in eachof 40 tissue/cell types. Finally, the 40 tissue/cell typeswereprioritized

and ranked according to the overlap ratio in each of the 25 tissue/cell types. For intuitive comparison and visu-

alization, the overlap ratio was normalized to z-score to represent the relevance of CRC- or super-enhancer re-

gions-derived TRs in each of 25 tissue/cell types.

Interpretation of GWAS disease-causal variants with TR cooperation information

7,747 candidate causal variants of 39 immune and non-immune diseases/traits were collected from PICSGWAS

fine-mapping study (Farh et al., 2015), and the control variants were sampled with matched allele frequency us-

ing vSampler (Huang et al., 2021). We used three computational strategies to estimate the associated TR bind-

ing in focused variant locus: motif scanning based on the TR position weight matrices using FIMO from the

MEME suite (v5.3.0) (Grant et al., 2011) (naı̈ve strategy), PIQ computational TF footprinting using both TR motif

and open chromatin profile of specific tissue/cell type (Sherwood et al., 2014) (PIQ strategy), and 3Dcoop in-

ferred TR binding event with cooperation evidence in context-specific 3D chromatin (3DCoop). Using 10,000

permutations, we tested the enrichment of the GWAS disease-causal variants on the putative binding sites

derived from above three strategies for several TRs showing high activity intervening chromatin interactions.

To investigate the tissue/cell type specificity of TR cooperation for explaining disease-causal variant in pheno-

typically relevant contexts, we further incorporated 12,738 causal variants for 54 blood-related autoimmune

diseases fromCAUSALdb (Wang et al., 2020) and 102 blood traits/autoimmune diseases-related TRs from liter-

atures. Five blood-derived cell types (including K562, GM12878, KBM7, HAP1, and THP-1) and associated TR

cooperation informationwere used to inspect the enrichment of autoimmune disease-causal variants on the pu-

tative binding sites of the 102 selected TRs, between the binding sites with blood cell-specific cooperation ev-

idence (3DCoop-specific) and the binding sites with unrestricted cooperation evidence (3DCoop-unrestricted).

The enrichment statistics for selected TRs were compared using one-tailed paired t test among different

strategies.

Analysis of TR cooperation in mouse neural development

For mouse embryonic stem cell (ES), neural progenitor cell (NPC), and cortical neuron (CN), Peakachu-

based Hi-C chromatin loops were collected from the 3D Genome Browser on mouse GRCm38/mm10

genome (Wang et al., 2018). Mouse TR motifs were collected from 10 resources, including Cis-BP 1.02

(Weirauch et al., 2014), JASPAR 2018 (Fornes et al., 2020), HOCOMOCO v11 (Kulakovskiy et al., 2018),

SwissRegulon (Pachkov et al., 2013), UniPROBE (Hume et al., 2015), GTRD (Yevshin et al., 2019), HOMER

motifs (Heinz et al., 2010), MEME motifs (Zhao and Stormo, 2011) and two literature (Isakova et al., 2017;
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Jolma et al., 2013), and were integrated using same procedure as compiling human TR motifs. The cell

state-matched ATAC-seq/RNA-seq datasets were downloaded from the GEO database. Similar to the

3DCoop pipeline used for 40 human tissue/cell types, TR clusters, TR maximum cliques, and TR pairs

were estimated accordingly. Other methods for analysing TR cooperation in mouse were the same as

the aforementioned descriptions.
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